A study of bispectral analysis in gearbox condition monitoring is presented.The theory of bispectrum and quadratic phase coupling (QPC) is first introduced, and then equationsfor computing bispectrum slices are obtain...A study of bispectral analysis in gearbox condition monitoring is presented.The theory of bispectrum and quadratic phase coupling (QPC) is first introduced, and then equationsfor computing bispectrum slices are obtained. To meet the needs of online monitoring, a simplifiedmethod of computing bispectrum diagonal slice is adopted. Industrial gearbox vibration signalsmeasured from normal and tooth cracked conditions are analyzed using the above method. Experimentsresults indicate that bispectrum can effectively suppress the additive Gaussian noise andchracterize the QPC phenomenon. It is also shown that the 1-D bispectrum diagonal slice can capturethe non-Gaussian and nonlinear feature of gearbox vibration when crack occurred, hence, this methodcan be employed to gearbox real time monitoring and early diagnosis.展开更多
The application ofbispectrum analysis in fault diagnosis o f gears is studied in this paper. Bispectrum analysis is capable of removing Gau ssian or symmetric non-Gaussian noise and providing more information than pow...The application ofbispectrum analysis in fault diagnosis o f gears is studied in this paper. Bispectrum analysis is capable of removing Gau ssian or symmetric non-Gaussian noise and providing more information than power spectrum analysis.The results of the research show that normal gear sig nals, cracked gear signals and broken gear signals can be easily distinguished b y using bispectrumas the signal features. The bispectrum diagonal slice B_x(ω_1,ω_2) can be used to identifythe gear condition automatically.展开更多
基金This project is supported by 95 Pan Deng Program of China (No.PD952l908) National Key Basic Research Special Foundation of China (No.Gl998020320)Provincial Natural Science Foundation of Hubei, China (No.2000J125)
文摘A study of bispectral analysis in gearbox condition monitoring is presented.The theory of bispectrum and quadratic phase coupling (QPC) is first introduced, and then equationsfor computing bispectrum slices are obtained. To meet the needs of online monitoring, a simplifiedmethod of computing bispectrum diagonal slice is adopted. Industrial gearbox vibration signalsmeasured from normal and tooth cracked conditions are analyzed using the above method. Experimentsresults indicate that bispectrum can effectively suppress the additive Gaussian noise andchracterize the QPC phenomenon. It is also shown that the 1-D bispectrum diagonal slice can capturethe non-Gaussian and nonlinear feature of gearbox vibration when crack occurred, hence, this methodcan be employed to gearbox real time monitoring and early diagnosis.
文摘The application ofbispectrum analysis in fault diagnosis o f gears is studied in this paper. Bispectrum analysis is capable of removing Gau ssian or symmetric non-Gaussian noise and providing more information than power spectrum analysis.The results of the research show that normal gear sig nals, cracked gear signals and broken gear signals can be easily distinguished b y using bispectrumas the signal features. The bispectrum diagonal slice B_x(ω_1,ω_2) can be used to identifythe gear condition automatically.