期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Bi-block positive semidefiniteness of bi-block symmetric tensors
1
作者 Zheng-Hai H UANG Xia LI Yong WANG 《Frontiers of Mathematics in China》 SCIE CSCD 2021年第1期141-169,共29页
The positive definiteness of elasticity tensors plays an important role in the elasticity theory.In this paper,we consider the bi-block symmetric tensors,which contain elasticity tensors as a subclass.First,we define ... The positive definiteness of elasticity tensors plays an important role in the elasticity theory.In this paper,we consider the bi-block symmetric tensors,which contain elasticity tensors as a subclass.First,we define the bi-block M-eigenvalue of a bi-block symmetric tensor,and show that a bi-block symmetric tensor is bi-block positive(semi)definite if and only if its smallest bi-block M-eigenvalue is(nonnegative)positive.Then,we discuss the distribution of bi-block M-eigenvalues,by which we get a sufficient condition for judging bi-block positive(semi)definiteness of the bi-block symmetric tensor involved.Particularly,we show that several classes of bi-block symmetric tensors are bi-block positive definite or bi-block positive semidefinite,including bi-block(strictly)diagonally dominant symmetric tensors and bi-block symmetric(B)B0-tensors.These give easily checkable sufficient conditions for judging bi-block positive(semi)definiteness of a bi-block symmetric tensor.As a byproduct,we also obtain two easily checkable sufficient conditions for the strong ellipticity of elasticity tensors. 展开更多
关键词 Bi-block symmetric tensor bi-block symmetric Z-tensor bi-block symmetric B 0-tensor diagonally dominant bi-block symmetric tensor bi-block M-eigenvalue
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部