A new surface inspection system for cold rolled strips based on image processing is introduced. The system is equipped withtwo different illumination structures and CCD matrix cameras. The structure and image processi...A new surface inspection system for cold rolled strips based on image processing is introduced. The system is equipped withtwo different illumination structures and CCD matrix cameras. The structure and image processing of the inspection system are described. Some efficient algorithms for image processing and classification are presented. The system is tested with strip samples fromcold rolling plants. The results show that the system can detect and recognize six common defects of cold rolled strips successfully.展开更多
The continuous growth in the scale of unmanned aerial vehicle (UAV) applications in transmission line inspection has resulted in a corresponding increase in the demand for UAV inspection image processing. Owing to its...The continuous growth in the scale of unmanned aerial vehicle (UAV) applications in transmission line inspection has resulted in a corresponding increase in the demand for UAV inspection image processing. Owing to its excellent performance in computer vision, deep learning has been applied to UAV inspection image processing tasks such as power line identification and insulator defect detection. Despite their excellent performance, electric power UAV inspection image processing models based on deep learning face several problems such as a small application scope, the need for constant retraining and optimization, and high R&D monetary and time costs due to the black-box and scene data-driven characteristics of deep learning. In this study, an automated deep learning system for electric power UAV inspection image analysis and processing is proposed as a solution to the aforementioned problems. This system design is based on the three critical design principles of generalizability, extensibility, and automation. Pre-trained models, fine-tuning (downstream task adaptation), and automated machine learning, which are closely related to these design principles, are reviewed. In addition, an automated deep learning system architecture for electric power UAV inspection image analysis and processing is presented. A prototype system was constructed and experiments were conducted on the two electric power UAV inspection image analysis and processing tasks of insulator self-detonation and bird nest recognition. The models constructed using the prototype system achieved 91.36% and 86.13% mAP for insulator self-detonation and bird nest recognition, respectively. This demonstrates that the system design concept is reasonable and the system architecture feasible .展开更多
This paper analyzes the current difficulties encountered in on-line inspection systems of strip surface quality, specifically relating to problems with real-time processing of huge amounts of data. To address this nee...This paper analyzes the current difficulties encountered in on-line inspection systems of strip surface quality, specifically relating to problems with real-time processing of huge amounts of data. To address this need, this paper describes an FPGA-based high-speed image processing module with both hardware and software aspects. Improving these two aspects together will help the system achieve real-time processing of massive image data, and simplifies the architecture of the strip surface quality on-line inspection system.展开更多
Large structures,such as bridges,highways,etc.,need to be inspected to evaluate their actual physical and functional condition,to predict future conditions,and to help decision makers allocating maintenance and rehabi...Large structures,such as bridges,highways,etc.,need to be inspected to evaluate their actual physical and functional condition,to predict future conditions,and to help decision makers allocating maintenance and rehabilitation resources.The assessment of civil infrastructure condition is carried out through information obtained by inspection and/or monitoring operations.Traditional techniques in structural health monitoring(SHM)involve visual inspection related to inspection standards that can be time-consuming data collection,expensive,labor intensive,and dangerous.To address these limitations,machine vision-based inspection procedures have increasingly been investigated within the research community.In this context,this paper proposes and compares four different computer vision procedures to identify damage by image processing:Otsu method thresholding,Markov random fields segmentation,RGB color detection technique,and K-means clustering algorithm.The first method is based on segmentation by thresholding that returns a binary image from a grayscale image.The Markov random fields technique uses a probabilistic approach to assign labels to model the spatial dependencies in image pixels.The RGB technique uses color detection to evaluate the defect extensions.Finally,K-means algorithm is based on Euclidean distance for clustering of the images.The benefits and limitations of each technique are discussed,and the challenges of using the techniques are highlighted.To show the effectiveness of the described techniques in damage detection of civil infrastructures,a case study is presented.Results show that various types of corrosion and cracks can be detected by image processing techniques making the proposed techniques a suitable tool for the prediction of the damage evolution in civil infrastructures.展开更多
The rapid evolution of wireless communication technologies has underscored the critical role of antennas in ensuring seamless connectivity.Antenna defects,ranging from manufacturing imperfections to environmental wear...The rapid evolution of wireless communication technologies has underscored the critical role of antennas in ensuring seamless connectivity.Antenna defects,ranging from manufacturing imperfections to environmental wear,pose significant challenges to the reliability and performance of communication systems.This review paper navigates the landscape of antenna defect detection,emphasizing the need for a nuanced understanding of various defect types and the associated challenges in visual detection.This review paper serves as a valuable resource for researchers,engineers,and practitioners engaged in the design and maintenance of communication systems.The insights presented here pave the way for enhanced reliability in antenna systems through targeted defect detection measures.In this study,a comprehensive literature analysis on computer vision algorithms that are employed in end-of-line visual inspection of antenna parts is presented.The PRISMA principles will be followed throughout the review,and its goals are to provide a summary of recent research,identify relevant computer vision techniques,and evaluate how effective these techniques are in discovering defects during inspections.It contains articles from scholarly journals as well as papers presented at conferences up until June 2023.This research utilized search phrases that were relevant,and papers were chosen based on whether or not they met certain inclusion and exclusion criteria.In this study,several different computer vision approaches,such as feature extraction and defect classification,are broken down and analyzed.Additionally,their applicability and performance are discussed.The review highlights the significance of utilizing a wide variety of datasets and measurement criteria.The findings of this study add to the existing body of knowledge and point researchers in the direction of promising new areas of investigation,such as real-time inspection systems and multispectral imaging.This review,on its whole,offers a complete study of computer vision approaches for quality control in antenna parts.It does so by providing helpful insights and drawing attention to areas that require additional exploration.展开更多
An objectifying system for color inspections of traditional Chinese medicine (CITCM) is developed. The entire system includes two parts : The hardware and the software. The hardware is an image acquiring device und...An objectifying system for color inspections of traditional Chinese medicine (CITCM) is developed. The entire system includes two parts : The hardware and the software. The hardware is an image acquiring device under a standard lighting condition, and it mainly includes a xenon lamp with color temperature of 5 500 K as light source, an integrating sphere used for diffusing light and a high resolution CCD camera. The software is used for digital image processing, and the procedure is divided into three steps. Firstly the skin/non-skin classifi- cation is performed by utilizing the threshold in chrominance channels of the RGB color space. Secondly, the fa- cial features are localized by using the image segmentation and coordinates sorting. Finally, the facial special re- gion(SR) corresponding to five internal organs is achieved by utilizing masks designed to take advantage of mor- phology. Subsequently, the chromaticity is calculated. The system is tested by taking 83 samples of 30 young and 53 elderly people. The experiment shows that there is significant difference of all SRs between the young and the elderly, and the system has better performance for objectifying research of CITCM.展开更多
In the proposed system for online inspection of steel balls, a diffuse illumination is developed to enhance defect appearances and produce high quality images. To fully view the entire sphere, a novel unfolding method...In the proposed system for online inspection of steel balls, a diffuse illumination is developed to enhance defect appearances and produce high quality images. To fully view the entire sphere, a novel unfolding method is put forward based on geometrical analysis, which only requires one-dimensional movement of the balls and a pair of cameras to capture images from different directions. Moreover, a realtime inspection algorithm is customized to improve both accuracy and efficiency. The precision and recall of the sample set were 87.7% and 98%, respectively. The average time cost on image processing and analysis for a steel ball was 47 ms, and the total time cost was less than 200 ms plus the cost of image acquisition and balls' movement. The system can sort 18 000 balls per hour with a spatial resolution higher than 0.01 mm.展开更多
In order to overcome the limitations of manual post-weld visual inspection approach, an automated inspection system is developed which uses three-dimensioual laser vision system based on the principle of optical trian...In order to overcome the limitations of manual post-weld visual inspection approach, an automated inspection system is developed which uses three-dimensioual laser vision system based on the principle of optical triangulation. The system hardware consists of a modular development kit (MDK), a computer, an actuating mechanism and so on. In image processing algorithms, extraction accuracy of centric line of laser stripe is the critical factor that determines the system performance. So according to the features of laser stripe image, a novel algorithm is developed to detect the central line of laser stripe fast and accurately. Experiments have demonstrated that this system can be used in various weld features inspection of both butt and fillet types of weld. Compared with traditional manual inspection method, this method has obvious dominance. The three-dimensional reconstruction result shows that this system has high accuracy and reliability.展开更多
In order to realize automatic weld seam tracking for pipeline ultrasonic flaw inspection, an image processing algorithm based on HSI color space was presented. Since the color tones of weld seam were different from th...In order to realize automatic weld seam tracking for pipeline ultrasonic flaw inspection, an image processing algorithm based on HSI color space was presented. Since the color tones of weld seam were different from the parent metal, weld seam images were transformed to HSI color space. In the HSl colar space, the weld seam and base metal area can be apparently distinguished. By using this image processing algorithm, the edges and centerline of pipeline weld seam can be correctly extracted. An industrial application system was developed based on the image processing algorithm, and the image processing time is less than 70 ms and the accuracy of weld seam recognition is better than 2mm.展开更多
In this paper, we describe an image enhancement and interpretation methodology to enhance and recognize surface defects and critical patterns from remote imagery of sewer pipeline inspection. The objective is to provi...In this paper, we describe an image enhancement and interpretation methodology to enhance and recognize surface defects and critical patterns from remote imagery of sewer pipeline inspection. The objective is to provide inspectors and professionals with better tools to allow them to examine the imagery for condition assessment. We present initial results of a collaboration with a robotic company through a case study on computer-assisted processing and interpretation of sewer pipeline inspection imagery. In the mean time, the described enhancement and interpretation methodology can also be applied to sewer pipeline condition assessment in an offline mode, where this methodology can support professionals’ examination of acquired sewer condition imagery.展开更多
This paper describes the use of computer-aided measurement for external metric screw threads. Thread parameters, including thread pitch, thread angle, pitch diameter and major diameter, were measured with CCD cameras ...This paper describes the use of computer-aided measurement for external metric screw threads. Thread parameters, including thread pitch, thread angle, pitch diameter and major diameter, were measured with CCD cameras and image analysis software. New technologies such as digital image processing were used to increase the efficiency of measurements. In this study, by reconstructing the toolmaker’s microscope, the computer-aided semi-automated measuring system was developed, which could evaluate the accuracy of screw thread profile. It is concluded that the measurement accuracy is comparable to that of traditional toolmaker’s microscope method. Key words screw threads - quality inspection - accuracy - digital image processing展开更多
This paper presents a highly efficient method for recognizing the existence of bridge coating rust defects by using color image processing. The detection of defects on steel bridge surfaces during the operation and ma...This paper presents a highly efficient method for recognizing the existence of bridge coating rust defects by using color image processing. The detection of defects on steel bridge surfaces during the operation and maintenance of bridge structures is important to ensure the safety and reliability of them. More advanced techniques such as digital image processing have been studied for better monitoring and detection as existing infrastructure systems are aged and deteriorated rapidly. Recently, image-based defect recognition and assessment methods have gained considerable attention in the civil engineering domain due to their accuracy, speed, and lower cost. The proposed method in this paper is a fast decision-making system by utilizing color image processing. It was developed by processing original bridge coating images to generate color values and calculating eigenvalues from each digitized image. The values from two different groups, a defective group and a nondefective group, are compared each other to figure out the feasibility of this approach. Finally, an automated defect recognition method is presented and tested with more images. This method can be used to make a decision whether a given digitized image contains defects.展开更多
文摘A new surface inspection system for cold rolled strips based on image processing is introduced. The system is equipped withtwo different illumination structures and CCD matrix cameras. The structure and image processing of the inspection system are described. Some efficient algorithms for image processing and classification are presented. The system is tested with strip samples fromcold rolling plants. The results show that the system can detect and recognize six common defects of cold rolled strips successfully.
基金This work was supported by Science and Technology Project of State Grid Corporation“Research on Key Technologies of Power Artificial Intelligence Open Platform”(5700-202155260A-0-0-00).
文摘The continuous growth in the scale of unmanned aerial vehicle (UAV) applications in transmission line inspection has resulted in a corresponding increase in the demand for UAV inspection image processing. Owing to its excellent performance in computer vision, deep learning has been applied to UAV inspection image processing tasks such as power line identification and insulator defect detection. Despite their excellent performance, electric power UAV inspection image processing models based on deep learning face several problems such as a small application scope, the need for constant retraining and optimization, and high R&D monetary and time costs due to the black-box and scene data-driven characteristics of deep learning. In this study, an automated deep learning system for electric power UAV inspection image analysis and processing is proposed as a solution to the aforementioned problems. This system design is based on the three critical design principles of generalizability, extensibility, and automation. Pre-trained models, fine-tuning (downstream task adaptation), and automated machine learning, which are closely related to these design principles, are reviewed. In addition, an automated deep learning system architecture for electric power UAV inspection image analysis and processing is presented. A prototype system was constructed and experiments were conducted on the two electric power UAV inspection image analysis and processing tasks of insulator self-detonation and bird nest recognition. The models constructed using the prototype system achieved 91.36% and 86.13% mAP for insulator self-detonation and bird nest recognition, respectively. This demonstrates that the system design concept is reasonable and the system architecture feasible .
文摘This paper analyzes the current difficulties encountered in on-line inspection systems of strip surface quality, specifically relating to problems with real-time processing of huge amounts of data. To address this need, this paper describes an FPGA-based high-speed image processing module with both hardware and software aspects. Improving these two aspects together will help the system achieve real-time processing of massive image data, and simplifies the architecture of the strip surface quality on-line inspection system.
基金Part of the research leading to these results has received funding from the research project DESDEMONA–Detection of Steel Defects by Enhanced MONitoring and Automated procedure for self-inspection and maintenance (grant agreement number RFCS-2018_800687) supported by EU Call RFCS-2017sponsored by the NATO Science for Peace and Security Programme under grant id. G5924。
文摘Large structures,such as bridges,highways,etc.,need to be inspected to evaluate their actual physical and functional condition,to predict future conditions,and to help decision makers allocating maintenance and rehabilitation resources.The assessment of civil infrastructure condition is carried out through information obtained by inspection and/or monitoring operations.Traditional techniques in structural health monitoring(SHM)involve visual inspection related to inspection standards that can be time-consuming data collection,expensive,labor intensive,and dangerous.To address these limitations,machine vision-based inspection procedures have increasingly been investigated within the research community.In this context,this paper proposes and compares four different computer vision procedures to identify damage by image processing:Otsu method thresholding,Markov random fields segmentation,RGB color detection technique,and K-means clustering algorithm.The first method is based on segmentation by thresholding that returns a binary image from a grayscale image.The Markov random fields technique uses a probabilistic approach to assign labels to model the spatial dependencies in image pixels.The RGB technique uses color detection to evaluate the defect extensions.Finally,K-means algorithm is based on Euclidean distance for clustering of the images.The benefits and limitations of each technique are discussed,and the challenges of using the techniques are highlighted.To show the effectiveness of the described techniques in damage detection of civil infrastructures,a case study is presented.Results show that various types of corrosion and cracks can be detected by image processing techniques making the proposed techniques a suitable tool for the prediction of the damage evolution in civil infrastructures.
文摘The rapid evolution of wireless communication technologies has underscored the critical role of antennas in ensuring seamless connectivity.Antenna defects,ranging from manufacturing imperfections to environmental wear,pose significant challenges to the reliability and performance of communication systems.This review paper navigates the landscape of antenna defect detection,emphasizing the need for a nuanced understanding of various defect types and the associated challenges in visual detection.This review paper serves as a valuable resource for researchers,engineers,and practitioners engaged in the design and maintenance of communication systems.The insights presented here pave the way for enhanced reliability in antenna systems through targeted defect detection measures.In this study,a comprehensive literature analysis on computer vision algorithms that are employed in end-of-line visual inspection of antenna parts is presented.The PRISMA principles will be followed throughout the review,and its goals are to provide a summary of recent research,identify relevant computer vision techniques,and evaluate how effective these techniques are in discovering defects during inspections.It contains articles from scholarly journals as well as papers presented at conferences up until June 2023.This research utilized search phrases that were relevant,and papers were chosen based on whether or not they met certain inclusion and exclusion criteria.In this study,several different computer vision approaches,such as feature extraction and defect classification,are broken down and analyzed.Additionally,their applicability and performance are discussed.The review highlights the significance of utilizing a wide variety of datasets and measurement criteria.The findings of this study add to the existing body of knowledge and point researchers in the direction of promising new areas of investigation,such as real-time inspection systems and multispectral imaging.This review,on its whole,offers a complete study of computer vision approaches for quality control in antenna parts.It does so by providing helpful insights and drawing attention to areas that require additional exploration.
基金Supported by the Innovation Team Fund of Nanjing University of Aeronautics and Astronauticsthe Chinese Medical Association Research Project(S10)~~
文摘An objectifying system for color inspections of traditional Chinese medicine (CITCM) is developed. The entire system includes two parts : The hardware and the software. The hardware is an image acquiring device under a standard lighting condition, and it mainly includes a xenon lamp with color temperature of 5 500 K as light source, an integrating sphere used for diffusing light and a high resolution CCD camera. The software is used for digital image processing, and the procedure is divided into three steps. Firstly the skin/non-skin classifi- cation is performed by utilizing the threshold in chrominance channels of the RGB color space. Secondly, the fa- cial features are localized by using the image segmentation and coordinates sorting. Finally, the facial special re- gion(SR) corresponding to five internal organs is achieved by utilizing masks designed to take advantage of mor- phology. Subsequently, the chromaticity is calculated. The system is tested by taking 83 samples of 30 young and 53 elderly people. The experiment shows that there is significant difference of all SRs between the young and the elderly, and the system has better performance for objectifying research of CITCM.
文摘In the proposed system for online inspection of steel balls, a diffuse illumination is developed to enhance defect appearances and produce high quality images. To fully view the entire sphere, a novel unfolding method is put forward based on geometrical analysis, which only requires one-dimensional movement of the balls and a pair of cameras to capture images from different directions. Moreover, a realtime inspection algorithm is customized to improve both accuracy and efficiency. The precision and recall of the sample set were 87.7% and 98%, respectively. The average time cost on image processing and analysis for a steel ball was 47 ms, and the total time cost was less than 200 ms plus the cost of image acquisition and balls' movement. The system can sort 18 000 balls per hour with a spatial resolution higher than 0.01 mm.
文摘In order to overcome the limitations of manual post-weld visual inspection approach, an automated inspection system is developed which uses three-dimensioual laser vision system based on the principle of optical triangulation. The system hardware consists of a modular development kit (MDK), a computer, an actuating mechanism and so on. In image processing algorithms, extraction accuracy of centric line of laser stripe is the critical factor that determines the system performance. So according to the features of laser stripe image, a novel algorithm is developed to detect the central line of laser stripe fast and accurately. Experiments have demonstrated that this system can be used in various weld features inspection of both butt and fillet types of weld. Compared with traditional manual inspection method, this method has obvious dominance. The three-dimensional reconstruction result shows that this system has high accuracy and reliability.
文摘In order to realize automatic weld seam tracking for pipeline ultrasonic flaw inspection, an image processing algorithm based on HSI color space was presented. Since the color tones of weld seam were different from the parent metal, weld seam images were transformed to HSI color space. In the HSl colar space, the weld seam and base metal area can be apparently distinguished. By using this image processing algorithm, the edges and centerline of pipeline weld seam can be correctly extracted. An industrial application system was developed based on the image processing algorithm, and the image processing time is less than 70 ms and the accuracy of weld seam recognition is better than 2mm.
基金the Innovative Management & Technology Services-National Aeronautics and Space Administration (IMTS-NASA) grant, and the Pennsylvania Infrastructure Technology Alliance.
文摘In this paper, we describe an image enhancement and interpretation methodology to enhance and recognize surface defects and critical patterns from remote imagery of sewer pipeline inspection. The objective is to provide inspectors and professionals with better tools to allow them to examine the imagery for condition assessment. We present initial results of a collaboration with a robotic company through a case study on computer-assisted processing and interpretation of sewer pipeline inspection imagery. In the mean time, the described enhancement and interpretation methodology can also be applied to sewer pipeline condition assessment in an offline mode, where this methodology can support professionals’ examination of acquired sewer condition imagery.
文摘This paper describes the use of computer-aided measurement for external metric screw threads. Thread parameters, including thread pitch, thread angle, pitch diameter and major diameter, were measured with CCD cameras and image analysis software. New technologies such as digital image processing were used to increase the efficiency of measurements. In this study, by reconstructing the toolmaker’s microscope, the computer-aided semi-automated measuring system was developed, which could evaluate the accuracy of screw thread profile. It is concluded that the measurement accuracy is comparable to that of traditional toolmaker’s microscope method. Key words screw threads - quality inspection - accuracy - digital image processing
文摘This paper presents a highly efficient method for recognizing the existence of bridge coating rust defects by using color image processing. The detection of defects on steel bridge surfaces during the operation and maintenance of bridge structures is important to ensure the safety and reliability of them. More advanced techniques such as digital image processing have been studied for better monitoring and detection as existing infrastructure systems are aged and deteriorated rapidly. Recently, image-based defect recognition and assessment methods have gained considerable attention in the civil engineering domain due to their accuracy, speed, and lower cost. The proposed method in this paper is a fast decision-making system by utilizing color image processing. It was developed by processing original bridge coating images to generate color values and calculating eigenvalues from each digitized image. The values from two different groups, a defective group and a nondefective group, are compared each other to figure out the feasibility of this approach. Finally, an automated defect recognition method is presented and tested with more images. This method can be used to make a decision whether a given digitized image contains defects.