A theoretical calculation is carried out to investigate the spectrum of a barium Rydberg atom in an external magnetic field. Using an effective approach incorporating quantum defect into the centrifugal term in the Ha...A theoretical calculation is carried out to investigate the spectrum of a barium Rydberg atom in an external magnetic field. Using an effective approach incorporating quantum defect into the centrifugal term in the Hamiltonian, we reexamine the reported spectrum of the barium Rydberg atom in a magnetic field of 2.89 T [J. Phys. B 28 L537 (1995)]. Our calculation employs B-spline basis expansion and complex coordinate rotation techniques. For single photon absorption from the ground 6s2 to 6snp Rydberg states, the spectrum is not influenced by quantum defects of channels ns and nd. The calculation is in agreement with the experimental observations until the energy reaches E = -60 cm-1. Beyond this energy, closer to the threshold, the calculated and experimental results do not agree with each other. Possible reasons for their discrepancies are discussed. Our study affirms an energy range where the diamagnetic spectrum of the barium atom can be explained thoroughly using a hydrogen model potential.展开更多
We study the role of laser polarization in the diamagnetic spectrum for the transition from the ground state to the highly excited Rydberg states through a single photon absorption. For simplicity, one usually polariz...We study the role of laser polarization in the diamagnetic spectrum for the transition from the ground state to the highly excited Rydberg states through a single photon absorption. For simplicity, one usually polarizes the irradiation laser to the selected main quantum axis, which is along the applied external electric or magnetic field. The transition selection rule is simply expressed as Am = O, which corresponds to the π transition. When the polarization is circularly polarized around the main axis, the σ+ or σ- transition occurs, corresponding to the selection rule of △m = 1 or △m = - 1, respectively. A slightly more complex case is that the laser is linearly polarized perpendicular to the main axis. The numerical calculation shows that we can decompose the transition into the sum of σ+ and σ- transitions, it is noted as the σ transition. For the more complex case in which the laser is linearly polarized with an arbitrary angle with respect to the main axis, we have to decompose the polarization into one along the main axis and the other one perpendicular to the main axis. They correspond to π and σ transitions, respectively. We demonstrate that these transitions in the diamagnetic spectrum and the above spectral decomposition well explain the experimentally observed spectra.展开更多
A novel fabrication method of multi-core photonic crystal fibers is proposed on the basis of a fiber-embedded technique. A taper tower is used to modify the structures of the fiber preform, and four steps of fiber fab...A novel fabrication method of multi-core photonic crystal fibers is proposed on the basis of a fiber-embedded technique. A taper tower is used to modify the structures of the fiber preform, and four steps of fiber fabrication and different structures of fiber samples are given. The mode structures and beating characteristics of a photonic crystal fiber sample with two successive cores are investigated in detail with the help of a supercontinuum light source, a charge-coupled device (CCD) camera, and an optical spectrum analyzer. The test results show a clear beating phenomenon between two orthotropic polarization modes with a 2.8-nm peak interval in wavelength.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11174329 and 91121005)the National Basic Research Program of China(Grant Nos.2012CB922101 and 2013CB922003)
文摘A theoretical calculation is carried out to investigate the spectrum of a barium Rydberg atom in an external magnetic field. Using an effective approach incorporating quantum defect into the centrifugal term in the Hamiltonian, we reexamine the reported spectrum of the barium Rydberg atom in a magnetic field of 2.89 T [J. Phys. B 28 L537 (1995)]. Our calculation employs B-spline basis expansion and complex coordinate rotation techniques. For single photon absorption from the ground 6s2 to 6snp Rydberg states, the spectrum is not influenced by quantum defects of channels ns and nd. The calculation is in agreement with the experimental observations until the energy reaches E = -60 cm-1. Beyond this energy, closer to the threshold, the calculated and experimental results do not agree with each other. Possible reasons for their discrepancies are discussed. Our study affirms an energy range where the diamagnetic spectrum of the barium atom can be explained thoroughly using a hydrogen model potential.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11174329 and 91121005)the National Basic Research Program of China (Grant No. 2013CB922003)
文摘We study the role of laser polarization in the diamagnetic spectrum for the transition from the ground state to the highly excited Rydberg states through a single photon absorption. For simplicity, one usually polarizes the irradiation laser to the selected main quantum axis, which is along the applied external electric or magnetic field. The transition selection rule is simply expressed as Am = O, which corresponds to the π transition. When the polarization is circularly polarized around the main axis, the σ+ or σ- transition occurs, corresponding to the selection rule of △m = 1 or △m = - 1, respectively. A slightly more complex case is that the laser is linearly polarized perpendicular to the main axis. The numerical calculation shows that we can decompose the transition into the sum of σ+ and σ- transitions, it is noted as the σ transition. For the more complex case in which the laser is linearly polarized with an arbitrary angle with respect to the main axis, we have to decompose the polarization into one along the main axis and the other one perpendicular to the main axis. They correspond to π and σ transitions, respectively. We demonstrate that these transitions in the diamagnetic spectrum and the above spectral decomposition well explain the experimentally observed spectra.
基金the China Scholarship Council(CSC) and the Research Foundation of Harbin Engineering University
文摘A novel fabrication method of multi-core photonic crystal fibers is proposed on the basis of a fiber-embedded technique. A taper tower is used to modify the structures of the fiber preform, and four steps of fiber fabrication and different structures of fiber samples are given. The mode structures and beating characteristics of a photonic crystal fiber sample with two successive cores are investigated in detail with the help of a supercontinuum light source, a charge-coupled device (CCD) camera, and an optical spectrum analyzer. The test results show a clear beating phenomenon between two orthotropic polarization modes with a 2.8-nm peak interval in wavelength.