Silicon carbide ceramics with different thicknesses/diameter ratios were prepared by using ultra-fine silicon carbide powder with the sintering additives of 1.0 wt% boron and 1.5 wt% carbon. The influence of thickness...Silicon carbide ceramics with different thicknesses/diameter ratios were prepared by using ultra-fine silicon carbide powder with the sintering additives of 1.0 wt% boron and 1.5 wt% carbon. The influence of thickness/diameter ratio on the microstructure and density of SiC ceramics was investigated in detail. The experimental results show that the addition of boron and carbon sintering aids can promote the densification process of SiC ceramic, leading to the low sintering temperature and improve mechanical properties. At 1950 ℃, SiC ceramic with a density of 99% exhibits Young's modulus, hardness, and flexural strength of 476 MPa, 28.3 GPa, and 334 MPa, respectively. It is found that long holding time has a positive effect on the uniformity of the microstructure and density distribution of SiC ceramics with large thickness/diameter ratios. Additionally, the sintering additive of boron can solid-solve into SiC, and then facilitate the phase transformation of SiC to form 6H-SiC and 4H-SiC composite ceramics.展开更多
According to the experimental data of the orifice discharge coefficient for the flow through a vertical sharp-edged orifice obtained in the previous study of this work,a theoretical criterion for flow mechanisms of sm...According to the experimental data of the orifice discharge coefficient for the flow through a vertical sharp-edged orifice obtained in the previous study of this work,a theoretical criterion for flow mechanisms of small orifice(viz.thick-walled orifice and nozzle) and large orifice(viz.thin-walled orifice) was proposed based on the ratio of orifice diameter to plate thickness.It can help explain the dissipation of the mechanical energy loss in the flow process for the two flow mechanisms under different operating regimes.The main parameters such as orifice diameter,plate thickness and liquid head were correlated,and a semi-empirical model for orifice coefficient and an empirical model with high precision at the stable region were developed.展开更多
In order to form large-diameter thin-wall cylindrical workpieces of TA15 titanium alloy,tube hot spinning experiments of the alloy were conducted on a CNC hot spinning machine.The causes of some forming defects occuri...In order to form large-diameter thin-wall cylindrical workpieces of TA15 titanium alloy,tube hot spinning experiments of the alloy were conducted on a CNC hot spinning machine.The causes of some forming defects occuring in hot spinning,such as crack,pileup,bulge and corrugation,were analyzed and the corresponding measures were put forward to avoid spinning defects,based on which a proper process scheme of hot spinning of TA15 alloy was obtained and the large-diameter and thin-walled cylindrical workpieces were formed with good quality.The results show that spinning temperature has distinct influence on forming quality of spun workpieces.The range of spinning temperature determines the spinnability of titanium alloy and the ununiformity of temperature distribution near the deformation zone leads to the formation of bulge.The reasonable heating method is that the deforming region is heated to the optimum temperature range of 600-700 ℃,the deformed region is heated continuously and a certain length of undeformed region is preheated.With the thickness-to-diameter ratio(t/D) of spun workpiece reducing to certain value(t/D<1%),surface bulge and corrugation is rather easier to come into being,which could be controlled through restraining diameter growth and employing smaller reduction rate and lower temperature in the optimum spinning temperature range.展开更多
基金Funded by the National Key Research and Development Plan of China (No.2017YFB0310400)the National Natural Science Foundation of China (No.5167020705)
文摘Silicon carbide ceramics with different thicknesses/diameter ratios were prepared by using ultra-fine silicon carbide powder with the sintering additives of 1.0 wt% boron and 1.5 wt% carbon. The influence of thickness/diameter ratio on the microstructure and density of SiC ceramics was investigated in detail. The experimental results show that the addition of boron and carbon sintering aids can promote the densification process of SiC ceramic, leading to the low sintering temperature and improve mechanical properties. At 1950 ℃, SiC ceramic with a density of 99% exhibits Young's modulus, hardness, and flexural strength of 476 MPa, 28.3 GPa, and 334 MPa, respectively. It is found that long holding time has a positive effect on the uniformity of the microstructure and density distribution of SiC ceramics with large thickness/diameter ratios. Additionally, the sintering additive of boron can solid-solve into SiC, and then facilitate the phase transformation of SiC to form 6H-SiC and 4H-SiC composite ceramics.
基金supported by the National Natural Science Foundation of China(20806090)
文摘According to the experimental data of the orifice discharge coefficient for the flow through a vertical sharp-edged orifice obtained in the previous study of this work,a theoretical criterion for flow mechanisms of small orifice(viz.thick-walled orifice and nozzle) and large orifice(viz.thin-walled orifice) was proposed based on the ratio of orifice diameter to plate thickness.It can help explain the dissipation of the mechanical energy loss in the flow process for the two flow mechanisms under different operating regimes.The main parameters such as orifice diameter,plate thickness and liquid head were correlated,and a semi-empirical model for orifice coefficient and an empirical model with high precision at the stable region were developed.
文摘In order to form large-diameter thin-wall cylindrical workpieces of TA15 titanium alloy,tube hot spinning experiments of the alloy were conducted on a CNC hot spinning machine.The causes of some forming defects occuring in hot spinning,such as crack,pileup,bulge and corrugation,were analyzed and the corresponding measures were put forward to avoid spinning defects,based on which a proper process scheme of hot spinning of TA15 alloy was obtained and the large-diameter and thin-walled cylindrical workpieces were formed with good quality.The results show that spinning temperature has distinct influence on forming quality of spun workpieces.The range of spinning temperature determines the spinnability of titanium alloy and the ununiformity of temperature distribution near the deformation zone leads to the formation of bulge.The reasonable heating method is that the deforming region is heated to the optimum temperature range of 600-700 ℃,the deformed region is heated continuously and a certain length of undeformed region is preheated.With the thickness-to-diameter ratio(t/D) of spun workpiece reducing to certain value(t/D<1%),surface bulge and corrugation is rather easier to come into being,which could be controlled through restraining diameter growth and employing smaller reduction rate and lower temperature in the optimum spinning temperature range.