期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Large-signal characterization of DDR silicon IMPATTs operating in millimeter-wave and terahertz regime 被引量:2
1
作者 Aritra Acharyya Jit Chakraborty +4 位作者 Kausik Das Subir Datta Pritam De Suranjana Banerjee J.P.Banerjee 《Journal of Semiconductors》 EI CAS CSCD 2013年第10期46-53,共8页
The authors have carried out the large-signal characterization ofsilicon-based double-drift region (DDR) impact avalanche transit time (IMPATT) devices designed to operate up to 0.5 THz using a large-signal simula... The authors have carried out the large-signal characterization ofsilicon-based double-drift region (DDR) impact avalanche transit time (IMPATT) devices designed to operate up to 0.5 THz using a large-signal simulation method developed by the authors based on non-sinusoidal voltage excitation. The effect of band-to-band tunneling as well as parasitic series resistance on the large-signal properties of DDR Si IMPATTs have also been studied at different mm-wave and THz frequencies. Large-signal simulation results show that DDR Si IMPATT is capable of delivering peak RF power of 633.69 mW with 7.95% conversion efficiency at 94 GHz for 50% voltage modulation, whereas peak RF power output and efficiency fall to 81.08 mW and 2.01% respectively at 0.5 THz for same voltage modulation. The simulation results are compared with the experimental results and are found to be in close agreement. 展开更多
关键词 band to band tunneling ddr silicon impatts large-signal simulation millimeter-wave series resistance terahertz regime
原文传递
Large-signal characterizations of DDR IMPATT devices based on group Ⅲ–Ⅴ semiconductors at millimeter-wave and terahertz frequencies 被引量:2
2
作者 Aritra Acharyya Aliva Mallik +4 位作者 Debopriya Banerjee Suman Ganguli Arindam Das Sudeepto Dasgupta J.P.Banerjee 《Journal of Semiconductors》 EI CAS CSCD 2014年第8期69-78,共10页
Large-signal (L-S) characterizations of double-drift region (DDR) impact avalanche transit time (IM- PATT) devices based on group III-V semiconductors such as wurtzite (Wz) GaN, GaAs and InP have been carried ... Large-signal (L-S) characterizations of double-drift region (DDR) impact avalanche transit time (IM- PATT) devices based on group III-V semiconductors such as wurtzite (Wz) GaN, GaAs and InP have been carried out at both millimeter-wave (mm-wave) and terahertz (THz) frequency bands. A L-S simulation technique based on a non-sinusoidal voltage excitation (NSVE) model developed by the authors has been used to obtain the high frequency properties of the above mentioned devices. The effect of band-to-band tunneling on the L-S properties of the device at different mm-wave and THz frequencies are also investigated. Similar studies are also carried out for DDR IMPATTs based on the most popular semiconductor material, i.e. Si, for the sake of comparison. A compara- tive study of the devices based on conventional semiconductor materials (i.e. GaAs, InP and Si) with those based on Wz-GaN shows significantly better performance capabilities of the latter at both mm-wave and THz frequencies. 展开更多
关键词 ddr impatts GaN group Ⅲ-Ⅴ large-signal simulation millimeter-wave terahertz regime WURTZITE
原文传递
Potentiality of semiconducting diamond as the base material of millimeter-wave and terahertz IMPATT devices
3
作者 Aritra Acharyya Suranjana Banerjee J.P.Banerjee 《Journal of Semiconductors》 EI CAS CSCD 2014年第3期39-49,共11页
An attempt is made in this paper to explore the potentiality of semiconducting type-IIb diamond as the base material of double-drift region(DDR) impact avalanche transit time(IMPATT) devices operating at both mill... An attempt is made in this paper to explore the potentiality of semiconducting type-IIb diamond as the base material of double-drift region(DDR) impact avalanche transit time(IMPATT) devices operating at both millimetre-wave(mm-wave) and terahertz(THz) frequencies. A rigorous large-signal(L-S) simulation based on the non-sinusoidal voltage excitation(NSVE) model developed earlier by the authors is used in this study. At first,a simulation study based on avalanche response time reveals that the upper cut-off frequency for DDR diamond IMPATTs is 1.5 THz, while the same for conventional DDR Si IMPATTs is much smaller, i.e. 0.5 THz. The L-S simulationresultsshowthattheDDRdiamondIMPATTdevicedeliversapeakRFpowerof7.79Wwithan18.17%conversion efficiency at 94 GHz; while at 1.5 THz, the peak power output and conversion efficiency decrease to6.19mWand8.17%respectively,taking50%voltagemodulation.AcomparativestudyofDDRIMPATTsbasedon diamond and Si shows that the former excels over the later as regards high frequency and high power performance at both mm-wave and THz frequency bands. The effect of band to band tunneling on the L-S properties of DDR diamond and Si IMPATTs has also been studied at different mm-wave and THz frequencies. 展开更多
关键词 diamond impatts ddr large-signal simulation millimeter-wave terahertz
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部