a single crystal chemical vapor deposition (scCVD) diamond detector has been successfully employed for neutron measurements in the EAST (Experimental Advanced Superconducting Tokamak) plasmas. The seCVD diamond de...a single crystal chemical vapor deposition (scCVD) diamond detector has been successfully employed for neutron measurements in the EAST (Experimental Advanced Superconducting Tokamak) plasmas. The seCVD diamond detector coated with a 5 μm 6LiF (95% 6Li enriched) layer was placed inside a polyethylene moderator to enhance the detection efficiency. The time-dependent neutron emission from deuteron plasmas during neutral beam injection (NBI) heating was obtained. The measured results are compared with that of fission chamber detectors, which always act as standard neutron flux monitors. The scCVD diamond detector exhibits good reliability, stability and the capability to withstand harsh radiation environments despite its low detection efficiency due to the small active volume.展开更多
A single-crystal diamond detector is fabricated to diagnose 14.1 MeV deuterium-tritium(D-T)fusion neutrons.The size of its diamond film is 4.5 mm×4.5 mm×500μm.This film is sandwiched by a flat,strip-pattern...A single-crystal diamond detector is fabricated to diagnose 14.1 MeV deuterium-tritium(D-T)fusion neutrons.The size of its diamond film is 4.5 mm×4.5 mm×500μm.This film is sandwiched by a flat,strip-patterned gold electrode.The dark current of this detector is experimentally measured to be lower than 0.1 nA under an electric field of 30 kV cm^(-1).This diamond detector is used to measure D-T fusion neutrons with a flux of about 7.5×10^(5) s^(-1)cm^(-2).The pronounced peak with a central energy of 8.28 MeV characterizing the^(12)C(n,α)~9Be reaction in the neutron energy spectrum is experimentally diagnosed,and the energy resolution is better than 1.69%,which is the best result reported so far using a diamond detector.A clear peak with a central energy of 6.52 MeV characterizing the^(12)C(n,n')3αreaction is also identified with an energy resolution of better than 7.67%.展开更多
The outstanding properties of CVD diamond film such as electronic, optical, thermal and mechanical and the high radiation hardness have made it an ideal candidate material for radiation detectors in severe environment...The outstanding properties of CVD diamond film such as electronic, optical, thermal and mechanical and the high radiation hardness have made it an ideal candidate material for radiation detectors in severe environments. Fabrication of 'detector grade' CVD diamond films and development of CVD diamond detectors have been leading edge subjects. Micro-strip gas chamber (MSGC) fabricated on CVD diamond substrate would overcome the charge-up effect and the substrate instability, which has been a hotspot in the research of gas detectors.展开更多
The time-of-flight technique coupled with semiconductor detectors is a powerful instrument to provide real-time characterization of ions accelerated because of laser-matter interactions.Nevertheless,the presence of st...The time-of-flight technique coupled with semiconductor detectors is a powerful instrument to provide real-time characterization of ions accelerated because of laser-matter interactions.Nevertheless,the presence of strong electromagnetic pulses(EMPs)generated during the interactions can severely hinder its employment.For this reason,the diagnostic system must be designed to have high EMP shielding.Here we present a new advanced prototype of detector,developed at ENEA-Centro Ricerche Frascati(Italy),with a large-area(15 mm×15 mm)polycrystalline diamond sensor having 150 μm thickness.The tailored detector design and testing ensure high sensitivity and,thanks to the fast temporal response,high-energy resolution of the reconstructed ion spectrum.The detector was offline calibrated and then successfully tested during an experimental campaign carried out at the PHELIX laser facility(E_(L)~100 J,τ_(L)=750 fs,I_(L)(1-2.5)×10^(19)W/cm^(2))at GSI(Germany).The high rejection to EMP fields was demonstrated and suitable calibrated spectra of the accelerated protons were obtained.展开更多
A chemical vapour deposition (CVD) diamond film detector was prepared and the main characteristics for pulsed proton detection were studied at Beijing Tandem Accelerator. The result shows that the charge collection ...A chemical vapour deposition (CVD) diamond film detector was prepared and the main characteristics for pulsed proton detection were studied at Beijing Tandem Accelerator. The result shows that the charge collection efficiency of the detector increases with increasing electric field intensity and reaches to 9.44% at 5 V/μm with the charge collection distance of 15.9 μm. The relationship between the sensitivity of the detector and proton energy is consistent with the Monte Carlo (MC) simulation result. Its plasma time for a pulse with 4.85×10^5 protons is 1l.2ns. The dose threshold for onset of damage under 9MeV proton irradiation in the detector is about 10^13 cm^-2. All of the results show that a CVD diamond detector has fast time response and high radiation hardness, and can be used in pulsed proton detection.展开更多
The chemical vapor deposition (CVD) process can produce single or poly-crystalline diamond samples of high purity or with controlled doping concentrations. The defect type in the CVD diamonds can be changed by heating...The chemical vapor deposition (CVD) process can produce single or poly-crystalline diamond samples of high purity or with controlled doping concentrations. The defect type in the CVD diamonds can be changed by heating the samples. Controlling the defect type can be used to create devices for quantum diamond switches that could be used in radiation sensors and quantum information technology. Eight samples of CVD diamonds were analyzed with Doppler broadening of positron annihilation radiation (DBAR) before and after annealing in high vacuum with an electron gun. Between temperatures of 1700 - 1850 K, nitrogen was liberated from the diamond sample. At these high temperatures, the surface was graphitized and a change in the color and transparency of the diamond was observed. Some of the samples were analyzed with DBAR during periods with and without light. The defect properties were observed to change depending on the time exposure to the positron beam and were then regenerated by exposure to light. The DBAR data is compared to photoluminescence data and a time varying defect state is discussed for detector and optical grade type II CVD diamonds.展开更多
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2013GB106004 and 2012GB101003)National Natural Science Foundation of China(No.91226102)
文摘a single crystal chemical vapor deposition (scCVD) diamond detector has been successfully employed for neutron measurements in the EAST (Experimental Advanced Superconducting Tokamak) plasmas. The seCVD diamond detector coated with a 5 μm 6LiF (95% 6Li enriched) layer was placed inside a polyethylene moderator to enhance the detection efficiency. The time-dependent neutron emission from deuteron plasmas during neutral beam injection (NBI) heating was obtained. The measured results are compared with that of fission chamber detectors, which always act as standard neutron flux monitors. The scCVD diamond detector exhibits good reliability, stability and the capability to withstand harsh radiation environments despite its low detection efficiency due to the small active volume.
基金supported by National Natural Science Foundation of China(No.12075241)。
文摘A single-crystal diamond detector is fabricated to diagnose 14.1 MeV deuterium-tritium(D-T)fusion neutrons.The size of its diamond film is 4.5 mm×4.5 mm×500μm.This film is sandwiched by a flat,strip-patterned gold electrode.The dark current of this detector is experimentally measured to be lower than 0.1 nA under an electric field of 30 kV cm^(-1).This diamond detector is used to measure D-T fusion neutrons with a flux of about 7.5×10^(5) s^(-1)cm^(-2).The pronounced peak with a central energy of 8.28 MeV characterizing the^(12)C(n,α)~9Be reaction in the neutron energy spectrum is experimentally diagnosed,and the energy resolution is better than 1.69%,which is the best result reported so far using a diamond detector.A clear peak with a central energy of 6.52 MeV characterizing the^(12)C(n,n')3αreaction is also identified with an energy resolution of better than 7.67%.
文摘The outstanding properties of CVD diamond film such as electronic, optical, thermal and mechanical and the high radiation hardness have made it an ideal candidate material for radiation detectors in severe environments. Fabrication of 'detector grade' CVD diamond films and development of CVD diamond detectors have been leading edge subjects. Micro-strip gas chamber (MSGC) fabricated on CVD diamond substrate would overcome the charge-up effect and the substrate instability, which has been a hotspot in the research of gas detectors.
基金funding from the Euratom research and training program 2014-2018 and 2019-2020 under grant agreement No.633053funding from LASERLAB-EUROPE(grant agreement No.654148,European Union’s Horizon 2020 research and innovation program)supported by the Ministry of Science and Higher Education of the Russian Federation(Agreement with Joint Institute for High Temperatures RAS No.075-15-2020-785,dated 23 September 2020).
文摘The time-of-flight technique coupled with semiconductor detectors is a powerful instrument to provide real-time characterization of ions accelerated because of laser-matter interactions.Nevertheless,the presence of strong electromagnetic pulses(EMPs)generated during the interactions can severely hinder its employment.For this reason,the diagnostic system must be designed to have high EMP shielding.Here we present a new advanced prototype of detector,developed at ENEA-Centro Ricerche Frascati(Italy),with a large-area(15 mm×15 mm)polycrystalline diamond sensor having 150 μm thickness.The tailored detector design and testing ensure high sensitivity and,thanks to the fast temporal response,high-energy resolution of the reconstructed ion spectrum.The detector was offline calibrated and then successfully tested during an experimental campaign carried out at the PHELIX laser facility(E_(L)~100 J,τ_(L)=750 fs,I_(L)(1-2.5)×10^(19)W/cm^(2))at GSI(Germany).The high rejection to EMP fields was demonstrated and suitable calibrated spectra of the accelerated protons were obtained.
基金Project supported by the National Natural Science Foundation of China (Grant No 10675074)
文摘A chemical vapour deposition (CVD) diamond film detector was prepared and the main characteristics for pulsed proton detection were studied at Beijing Tandem Accelerator. The result shows that the charge collection efficiency of the detector increases with increasing electric field intensity and reaches to 9.44% at 5 V/μm with the charge collection distance of 15.9 μm. The relationship between the sensitivity of the detector and proton energy is consistent with the Monte Carlo (MC) simulation result. Its plasma time for a pulse with 4.85×10^5 protons is 1l.2ns. The dose threshold for onset of damage under 9MeV proton irradiation in the detector is about 10^13 cm^-2. All of the results show that a CVD diamond detector has fast time response and high radiation hardness, and can be used in pulsed proton detection.
文摘The chemical vapor deposition (CVD) process can produce single or poly-crystalline diamond samples of high purity or with controlled doping concentrations. The defect type in the CVD diamonds can be changed by heating the samples. Controlling the defect type can be used to create devices for quantum diamond switches that could be used in radiation sensors and quantum information technology. Eight samples of CVD diamonds were analyzed with Doppler broadening of positron annihilation radiation (DBAR) before and after annealing in high vacuum with an electron gun. Between temperatures of 1700 - 1850 K, nitrogen was liberated from the diamond sample. At these high temperatures, the surface was graphitized and a change in the color and transparency of the diamond was observed. Some of the samples were analyzed with DBAR during periods with and without light. The defect properties were observed to change depending on the time exposure to the positron beam and were then regenerated by exposure to light. The DBAR data is compared to photoluminescence data and a time varying defect state is discussed for detector and optical grade type II CVD diamonds.