A new impregnated diamond bit was designed to solve the slipping problem when impregnated diamond bit was used for extra-hard, compact, and nonabrasive rock formation. Adding Si C grits into matrix, Si C grits can eas...A new impregnated diamond bit was designed to solve the slipping problem when impregnated diamond bit was used for extra-hard, compact, and nonabrasive rock formation. Adding Si C grits into matrix, Si C grits can easily be exfoliated from the surface of the matrix due to weak holding-force with matrix, which made the surface non-smooth. Three Ф36/24 mm laboratorial bits were manufactured to conduct a laboratory drilling test on zirconiacorundum refractory brick. The laboratory drilling test indicates that the abrasive resistance of the bit work layer is proportional to the Si C concentation. The higher the concentration, the weaker the abrasive resistance of matrix. The new impregnated diamond bit was applied to a mining area drilling construction in Jiangxi province, China. Field drilling application indicates that the ROP(rate of penetration) of the new bit is approximately two to three times that of the common bits. Compared with the common bits, the surface of the new bit has typical abrasive wear characteristics,and the metabolic rate of the diamond can be well matched to the wear rate of the matrix.展开更多
In order to improve the matrix performance of impregnated diamond drill bit to better meet the drilling needs,the effects of the addition of nano-WC and nano-NbC particles on the matrix material together with the mech...In order to improve the matrix performance of impregnated diamond drill bit to better meet the drilling needs,the effects of the addition of nano-WC and nano-NbC particles on the matrix material together with the mechanical properties and microstructure of the diamond-matrix composite material of the Fe-based diamond drill bit were studied by using the method of uniform formula design,regression analysis and solution finding.An indoor drilling test was also carried out using the fabricated impregnated diamond drill bit.The results showed that after the addition of nano-NbC and nano-WC,the hardness and flexural strength of the matrix material got improved,as the flexural strength of the diamond composite material increased to 4.29%,the wear-resistance ratio increased to 8.75%,and the tighter the chemical bonding between the diamond and the matrix.This,indicates that the addition of nanoparticles has a positive significance in improving the performance of the diamond composite.The results of the drilling test showed that the mechanical drilling speed of the impregnated diamond drill bit after nanoparticle strengthening is 25.85%higher than that of the conventional drill bit,and the matrix wear was increased by 17.5%.It proves that nanoparticles can improve the drilling performance and efficiency of drill bit.展开更多
Recently impregnated diamond bits have been widely applied in drilling hard and medium - hard formations in the world . It is quite necessary to study the fracturing mecha-nism of the impregnated diamond bit and the c...Recently impregnated diamond bits have been widely applied in drilling hard and medium - hard formations in the world . It is quite necessary to study the fracturing mecha-nism of the impregnated diamond bit and the classification of rocks , which can realize optimum drilling . Using multi - parameter rotary test stand can monitor and print nine parameters . The diamond size and concentration for experiment are various and there are nearly 200 types of samples , numbering over 1000 pieces . The results of laboratory are the same as those in the field . Besides , this paper expresses that the diamond concentration of impregnated diamond bits effect the bonding strength of diamond imbedded in ma-trix . During drilling by impregnated diamond bits three ways are used to cool the bits . The contact area between impregnated diamond layer and flow , and the drilling flow through annulus carrying away heat with conduction form can be shown by equations . It is impossible to classify the rock drillability only by using single factor . The best method is to use main factors to analyse the drillability of rocks. Only in this way , the results can be applied to practice .展开更多
The functions of lubricants in diamond drilling were discussedin this paper. The influences of lubricant on drilling efficiency and bit′s life were compared and analyzed with simulated drilling test and lubrication t...The functions of lubricants in diamond drilling were discussedin this paper. The influences of lubricant on drilling efficiency and bit′s life were compared and analyzed with simulated drilling test and lubrication test apparatus. Lubricating mechanisms were also discussed.展开更多
The impregnated diamond(ID)bit drilling is one of the main rotary drilling methods in hard rock drilling and it is widely used in mineral exploration,oil and gas exploration,mining,and construction industries.In this ...The impregnated diamond(ID)bit drilling is one of the main rotary drilling methods in hard rock drilling and it is widely used in mineral exploration,oil and gas exploration,mining,and construction industries.In this study,the quadratic polynomial model in ID bit drilling process was proposed as a function of controllable mechanical operating parameters,such as weight on bit(WOB)and revolutions per minute(RPM).Also,artificial neural networks(ANN)model for predicting the rate of penetration(ROP)was developed using datasets acquired during the drilling operation.The relationships among mechanical operating parameters(WOB and RPM)and ROP in ID bit drilling were analyzed using estimated quadratic polynomial model and trained ANN model.The results show that ROP has an exponential relationship with WOB,whereas ROP has linear relationship with RPM.Finally,the optimal regime of mechanical drilling parameters to achieve high ROP was confirmed using proposed model in combination with rock breaking principal.展开更多
Bionics was applied in the design of the impregnated diamond bit. Based on previous resehrch and the 63# bit matrix formula, a new non-smooth bionic impregnated diamond bit with a single circular ring was designed and...Bionics was applied in the design of the impregnated diamond bit. Based on previous resehrch and the 63# bit matrix formula, a new non-smooth bionic impregnated diamond bit with a single circular ring was designed and manufactured, and also tested indoor. The results were satisfactory. During its shape contacted surface system, non-smooth shape display some structure merits such as decreasing resistance. It was obvious that the drilling efficiency of the bionics bit is much higher than that of ordinary's one, and so does the working life of bionic bit.展开更多
At the present, the cutters used in button bits and rock bits are mainly cobalt tungsten carbide in our country. Because of its low abrasive resistance, the bit service life and drilling efficiency was very low when t...At the present, the cutters used in button bits and rock bits are mainly cobalt tungsten carbide in our country. Because of its low abrasive resistance, the bit service life and drilling efficiency was very low when the hard and extremely hard formations were being drilled. Owing to its high abrasive resistance, the diamond composite material is widely used in drilling operations. However, its toughness against impact is too low to be used in percussion drilling, only can it be used in rotary drilling. In order to solve the problems encountered by DTH hammer in hard rock drilling, make bit life longer, increase rate of penetration and decrease drilling cost, a new type diamond enhanced tungsten carbide composite button with high abrasive resistance and high toughness against impact, which may be used in percussion drilling, has been developed. The key problems to make the button are to improve the thermal stability of diamond, to increase the welding strength between diamond and cemented tungsten carbide, and to lower the sintering temperature of tungsten carbide. All these problems have been solved effectively by pretreatment of diamond, low temperature activation hot-press sintering and high sintering pressure. (1) To plate tungsten on the surface of diamond. Diamond suffers easily from erosion in the environment of high temperature containing oxygen and iron family elements. There is very high energy between the interface of diamond and bonding metal and so the metallurgical bond can’t form at the interface between diamond and bond metal. This will lower greatly the bending strength and the toughness against impact of diamond enhanced tungsten carbide composite button. In order to improve thermal stability of diamond and increase the bonding strength of the interface between diamond and bond metal, to plate tungsten on the surface of diamond by vacuum vapor deposit is adopted. (2) To lower the sintering temperature by adding nickel, phosphorus and boron etc into conventional mixed powder. In general, the sintering temperature of cemented tungsten carbide is more than 1 350 ℃ in which diamond will suffer from serious heat erosion, so the sintering temperature must be lowered. To add nickel, phosphorus and boron etc into cobalt-base bond whose melting point is more than 1 350 ℃ will lower the sintering temperature to about 1 050 ℃. To add phosphorus can lower the temperature of liquid phase occurring and promote the densification of matrix alloy in advance because the co-crystallization temperature of Ni-P and Co-P is 880 ℃ and 1 020 ℃ respectively. The proper adding amount of nickel, phosphorus and boron etc is a key problem. To substitute nickel for partial cobalt can improve the toughness against impact of diamond enhanced tungsten carbide composite button and lower the sintering temperature. To add boron is helpful for sintering and improving the toughness against impact of diamond enhanced tungsten carbide composite button. (3) To increase the sintering press. Under the same sintering temperature, to improve the sintering press can improve the density and strength of sintering products. In this study to increase the sintering press 35 MPa in the usual conditions to 50~60 MPa in sintering diamond enhanced tungsten carbide button by adopting ceramic material as pressing rod has improved the sintering quality effectively. The properties of the button have been measured under lab conditions. The testing results show that its hardness is more than HRA86 and that its abrasiveness resistance is 100 times more than conventional cemented tungsten carbide, and its toughness against impact is more than 100J. All these data theoretically show that the button has very good mechanical properties that can meet the need of percussion drilling, and can solve the problems encountered with button bit of conventional cemented tungsten carbide.展开更多
基金Project(51074180)supported by the National Natural Science Foundation of China
文摘A new impregnated diamond bit was designed to solve the slipping problem when impregnated diamond bit was used for extra-hard, compact, and nonabrasive rock formation. Adding Si C grits into matrix, Si C grits can easily be exfoliated from the surface of the matrix due to weak holding-force with matrix, which made the surface non-smooth. Three Ф36/24 mm laboratorial bits were manufactured to conduct a laboratory drilling test on zirconiacorundum refractory brick. The laboratory drilling test indicates that the abrasive resistance of the bit work layer is proportional to the Si C concentation. The higher the concentration, the weaker the abrasive resistance of matrix. The new impregnated diamond bit was applied to a mining area drilling construction in Jiangxi province, China. Field drilling application indicates that the ROP(rate of penetration) of the new bit is approximately two to three times that of the common bits. Compared with the common bits, the surface of the new bit has typical abrasive wear characteristics,and the metabolic rate of the diamond can be well matched to the wear rate of the matrix.
基金National Center for International Research on Deep Earth Drilling and Resource Development,Faculty of Engineering,China University of Geosciences(Wuhan)(No.DEDRD-2022-08).
文摘In order to improve the matrix performance of impregnated diamond drill bit to better meet the drilling needs,the effects of the addition of nano-WC and nano-NbC particles on the matrix material together with the mechanical properties and microstructure of the diamond-matrix composite material of the Fe-based diamond drill bit were studied by using the method of uniform formula design,regression analysis and solution finding.An indoor drilling test was also carried out using the fabricated impregnated diamond drill bit.The results showed that after the addition of nano-NbC and nano-WC,the hardness and flexural strength of the matrix material got improved,as the flexural strength of the diamond composite material increased to 4.29%,the wear-resistance ratio increased to 8.75%,and the tighter the chemical bonding between the diamond and the matrix.This,indicates that the addition of nanoparticles has a positive significance in improving the performance of the diamond composite.The results of the drilling test showed that the mechanical drilling speed of the impregnated diamond drill bit after nanoparticle strengthening is 25.85%higher than that of the conventional drill bit,and the matrix wear was increased by 17.5%.It proves that nanoparticles can improve the drilling performance and efficiency of drill bit.
文摘Recently impregnated diamond bits have been widely applied in drilling hard and medium - hard formations in the world . It is quite necessary to study the fracturing mecha-nism of the impregnated diamond bit and the classification of rocks , which can realize optimum drilling . Using multi - parameter rotary test stand can monitor and print nine parameters . The diamond size and concentration for experiment are various and there are nearly 200 types of samples , numbering over 1000 pieces . The results of laboratory are the same as those in the field . Besides , this paper expresses that the diamond concentration of impregnated diamond bits effect the bonding strength of diamond imbedded in ma-trix . During drilling by impregnated diamond bits three ways are used to cool the bits . The contact area between impregnated diamond layer and flow , and the drilling flow through annulus carrying away heat with conduction form can be shown by equations . It is impossible to classify the rock drillability only by using single factor . The best method is to use main factors to analyse the drillability of rocks. Only in this way , the results can be applied to practice .
文摘The functions of lubricants in diamond drilling were discussedin this paper. The influences of lubricant on drilling efficiency and bit′s life were compared and analyzed with simulated drilling test and lubrication test apparatus. Lubricating mechanisms were also discussed.
文摘The impregnated diamond(ID)bit drilling is one of the main rotary drilling methods in hard rock drilling and it is widely used in mineral exploration,oil and gas exploration,mining,and construction industries.In this study,the quadratic polynomial model in ID bit drilling process was proposed as a function of controllable mechanical operating parameters,such as weight on bit(WOB)and revolutions per minute(RPM).Also,artificial neural networks(ANN)model for predicting the rate of penetration(ROP)was developed using datasets acquired during the drilling operation.The relationships among mechanical operating parameters(WOB and RPM)and ROP in ID bit drilling were analyzed using estimated quadratic polynomial model and trained ANN model.The results show that ROP has an exponential relationship with WOB,whereas ROP has linear relationship with RPM.Finally,the optimal regime of mechanical drilling parameters to achieve high ROP was confirmed using proposed model in combination with rock breaking principal.
文摘Bionics was applied in the design of the impregnated diamond bit. Based on previous resehrch and the 63# bit matrix formula, a new non-smooth bionic impregnated diamond bit with a single circular ring was designed and manufactured, and also tested indoor. The results were satisfactory. During its shape contacted surface system, non-smooth shape display some structure merits such as decreasing resistance. It was obvious that the drilling efficiency of the bionics bit is much higher than that of ordinary's one, and so does the working life of bionic bit.
文摘At the present, the cutters used in button bits and rock bits are mainly cobalt tungsten carbide in our country. Because of its low abrasive resistance, the bit service life and drilling efficiency was very low when the hard and extremely hard formations were being drilled. Owing to its high abrasive resistance, the diamond composite material is widely used in drilling operations. However, its toughness against impact is too low to be used in percussion drilling, only can it be used in rotary drilling. In order to solve the problems encountered by DTH hammer in hard rock drilling, make bit life longer, increase rate of penetration and decrease drilling cost, a new type diamond enhanced tungsten carbide composite button with high abrasive resistance and high toughness against impact, which may be used in percussion drilling, has been developed. The key problems to make the button are to improve the thermal stability of diamond, to increase the welding strength between diamond and cemented tungsten carbide, and to lower the sintering temperature of tungsten carbide. All these problems have been solved effectively by pretreatment of diamond, low temperature activation hot-press sintering and high sintering pressure. (1) To plate tungsten on the surface of diamond. Diamond suffers easily from erosion in the environment of high temperature containing oxygen and iron family elements. There is very high energy between the interface of diamond and bonding metal and so the metallurgical bond can’t form at the interface between diamond and bond metal. This will lower greatly the bending strength and the toughness against impact of diamond enhanced tungsten carbide composite button. In order to improve thermal stability of diamond and increase the bonding strength of the interface between diamond and bond metal, to plate tungsten on the surface of diamond by vacuum vapor deposit is adopted. (2) To lower the sintering temperature by adding nickel, phosphorus and boron etc into conventional mixed powder. In general, the sintering temperature of cemented tungsten carbide is more than 1 350 ℃ in which diamond will suffer from serious heat erosion, so the sintering temperature must be lowered. To add nickel, phosphorus and boron etc into cobalt-base bond whose melting point is more than 1 350 ℃ will lower the sintering temperature to about 1 050 ℃. To add phosphorus can lower the temperature of liquid phase occurring and promote the densification of matrix alloy in advance because the co-crystallization temperature of Ni-P and Co-P is 880 ℃ and 1 020 ℃ respectively. The proper adding amount of nickel, phosphorus and boron etc is a key problem. To substitute nickel for partial cobalt can improve the toughness against impact of diamond enhanced tungsten carbide composite button and lower the sintering temperature. To add boron is helpful for sintering and improving the toughness against impact of diamond enhanced tungsten carbide composite button. (3) To increase the sintering press. Under the same sintering temperature, to improve the sintering press can improve the density and strength of sintering products. In this study to increase the sintering press 35 MPa in the usual conditions to 50~60 MPa in sintering diamond enhanced tungsten carbide button by adopting ceramic material as pressing rod has improved the sintering quality effectively. The properties of the button have been measured under lab conditions. The testing results show that its hardness is more than HRA86 and that its abrasiveness resistance is 100 times more than conventional cemented tungsten carbide, and its toughness against impact is more than 100J. All these data theoretically show that the button has very good mechanical properties that can meet the need of percussion drilling, and can solve the problems encountered with button bit of conventional cemented tungsten carbide.