The interfacial thermal conductance (ITC) and thermal conductivity (TC) of diamond/Al composites with various coatings were theoretically studied and discussed. A series of predictions and numerical analyses were ...The interfacial thermal conductance (ITC) and thermal conductivity (TC) of diamond/Al composites with various coatings were theoretically studied and discussed. A series of predictions and numerical analyses were performed to investigate the effect of thickness, sound velocity, and other parameters of coating layers on the ITC and TC. It is found that both the ITC and TC decline with increasing coating thickness, especially for the coatings with relatively low thermal conductivity. Nevertheless, if the coating thickness is close to zero, or quite a small value, the ITC and TC are mainly determined by the constants of the coating material. Under this condition, coatings such as Ni, TiC, Mo 2 C, SiC, and Si can significantly improve the ITC and TC of diamond/Al composites. By contrast, coatings like Ag will exert the negative effect. Taking the optimization of interfacial bonding into account, conductive carbides such as TiC or Mo 2 C with low thickness can be the most suitable coatings for diamond/Al composites.展开更多
To improve the sliding wear resistance of AZ91D magnesium alloy, Cu-based amorphous composite coatings made of CuaTTi34Zr11Nis and Cu47Ti34Zr11Ni8+20 wt pct SiC powders were fabricated on AZ91D magnesium alloy by las...To improve the sliding wear resistance of AZ91D magnesium alloy, Cu-based amorphous composite coatings made of CuaTTi34Zr11Nis and Cu47Ti34Zr11Ni8+20 wt pct SiC powders were fabricated on AZ91D magnesium alloy by laser cladding, respectively. SEM (scanning electron microscopy), EDS (energy dispersive X-ray spectroscopy), XRD (X-ray diffraction) and TEM (transmission electron microscopy) techniques were employed to study the phases of the coatings. The results show that the coatings mainly consist of amorphous phase and different intermetallic compounds. The reason of formation of amorphous phase and the function of SiC particles were explained in details.展开更多
To select the proper composition and obtain an overall material?microstructure?property relationship for Cu?Fe alloy, theeffect of Fe content on microstructure and properties of Cu?Fe-based composite coatings by laser...To select the proper composition and obtain an overall material?microstructure?property relationship for Cu?Fe alloy, theeffect of Fe content on microstructure and properties of Cu?Fe-based composite coatings by laser induction hybrid rapid claddingwas investigated. Microstructure characterization of the composite coatings was tested utilizing SEM, XRD and EDS. Microhardnessmeasurement was executed to evaluate the mechanical properties of the composite coatings. The results show that for low Fe content,the composite coating presents a feature that Fe-rich equiaxed dendrites are embedded in the Cu-rich matrix. With increasing Fecontent, the Fe-rich particles are dispersed in the Cu-rich matrix. With further increasing Fe content, large amounts of Cu-richparticles are homogeneously dispersed in the interdendrite of the Fe-rich matrix. Correspondingly, the average microhardness of thecomposite coatings increases gradually with the increase of Fe content and the microhardness of Cu14.5Fe83Si2C0.5 coating is muchtwice higher than that of the substrate.展开更多
The coating of Ni W P was deposited as base layer, and then the composite coating of Ni Ti(particles) Re(rare earth) was deposited subsequently on the surface of diamond using electroless plating by adding 2...The coating of Ni W P was deposited as base layer, and then the composite coating of Ni Ti(particles) Re(rare earth) was deposited subsequently on the surface of diamond using electroless plating by adding 2~3 μm Ti particles and trace rare earth salt to bath solution. Ti particles deposited on the surface of diamond were found by SEM and formation of TiC was verified by X ray diffraction analysis after heat treatment of the coatings in vacuum at 900 ℃. The binding strength between the coated diamond and the metal matrix was improved effectively in the diamond composite based on metal cement.展开更多
Cu/diamond composites have been considered as the next generation of thermal management material for electronic packages and heat sinks applications. Cu/diamond composites with different volume fractions of diamond we...Cu/diamond composites have been considered as the next generation of thermal management material for electronic packages and heat sinks applications. Cu/diamond composites with different volume fractions of diamond were successfully prepared by spark plasma sintering(SPS) method. The sintering temperatures and volume fractions(50%, 60% and 70%) of diamond were changed to investigate their effects on the relative density, homogeneity of the microstructure and thermal conductivity of the composites. The results show that the relative density, homogeneity of the microstructure and thermal conductivity of the composites increase with decreasing the diamond volume fraction; the relative density and thermal conductivity of the composites increase with increasing the sintering temperature. The thermal conductivity of the composites is a result of the combined effect of the volume fraction of diamond, the homogeneity and relative density of the composites.展开更多
The wear behaviour of composite coatings is related to the nature of embedded particles.The effects of particle size on the wear behaviour of composite coatings are analyzed.Electroless nickel composite coatings conta...The wear behaviour of composite coatings is related to the nature of embedded particles.The effects of particle size on the wear behaviour of composite coatings are analyzed.Electroless nickel composite coatings containing diamond particles with the sizes in the range of 0—0.5,0.5—1,1—2μm are prepared.The surface morphology of diamond particles and composite coatings are observed by scanning electron microscopy(SEM).The wear tests of composite coatings are comparatively evaluated by sliding against a cemented tungsten carbide ball.The 3D morphology of worn scar is evaluated by using a 3Dprofiler.The results show that the hardness and wear resistance of composite coatings can increase with the increase of particle sizes.The mixture mechanism of adhesive wear and abrasive wear turn into single abrasive wear with the increase of particle sizes as well.The transformation of wear behaviour is mainly attributed to particle roles during wear process.展开更多
A specific revised HFCVD apparatus and a novel process combining HFCVD and polishing technique were presented to deposit the micro-and nano-crystalline multilayered ultra-smooth diamond(USCD) film on the interior-ho...A specific revised HFCVD apparatus and a novel process combining HFCVD and polishing technique were presented to deposit the micro-and nano-crystalline multilayered ultra-smooth diamond(USCD) film on the interior-hole surface of WC-Co drawing dies with aperture ranging from d1.0 mm to 60 mm.Characterization results indicate that the surface roughness values(Ra) in the entry zone,drawing zone and bearing zone of as-fabricated USCD coated drawing die were measured as low as 25.7,23.3 and 25.5 nm,respectively.Furthermore,the friction properties of USCD films were examined in both dry sliding and water-lubricating conditions,and the results show that the USCD film presents much superior friction properties.Its friction coefficients against ball-bearing steel,copper and silicon nitride balls(d4 mm),is always lower than that of microcrystalline diamond(MCD) or WC-Co sample,regardless of the lubricating condition.Meanwhile,it still presents competitive wear resistance with the MCD films.Finally,the working lifetime and performance of as-fabricated USCD coated drawing dies were examined under producing low-carbon steel pipes in dry-sliding and water-lubricating conditions.Under the water-lubricating drawing condition,its production significantly increases by about 20 times compared with the conventional WC-Co drawing dies.展开更多
Tungsten was plated on the surface of diamond by using thermal diffusion method.Different process parameters were employed to prepare the composites with tungsten,diamond and copper.The micro morphology of different s...Tungsten was plated on the surface of diamond by using thermal diffusion method.Different process parameters were employed to prepare the composites with tungsten,diamond and copper.The micro morphology of different samples was observed,and the thermal conductivity of samples was measured by laser flash method.The optimal process parameters for preparing diamond/copper composites with high thermal conductivity were investigated.The results indicated that plating tungsten on diamond could modify the interface bonding.When the diamond was plated for 60 min,the coating appeared intact,uniform and flat,and the thermal conductivity of the sample could reach as high as 486 W/(m·K).The integrity and uniformity were more important than thickness for the coating.When the tungsten-plated diamond was further annealed,the metallurgical bonding between the coating and the diamond was enhanced,and the thermal conductivity rose to 559 W/(m·K).展开更多
In this paper,diamond/CuCr and diamond/CuB composites were prepared using the pressure infiltration method.The physical property measurement system(PPMS)was adopted to evaluate the thermal conductivity of diamond/Cu a...In this paper,diamond/CuCr and diamond/CuB composites were prepared using the pressure infiltration method.The physical property measurement system(PPMS)was adopted to evaluate the thermal conductivity of diamond/Cu and MoCu composites within the range of100–350 K,and a scanning electron microscope(SEM)was utilized to analyze the microstructure and fracture appearance of the materials.The research indicates that the thermal conductivity of diamond/Cu composite within the range of100–350 K is 2.5–3.0 times that of the existing MoCu material,and the low-temperature thermal conductivity of diamond/Cu composite presents an exponential relationship with the temperature.If B element was added to a Cu matrix and a low-temperature binder was used for prefabricated elements,favorable interfacial adhesion,relatively high interfacial thermal conductivity,and favorable low-temperature heat conduction characteristics would be apparent.展开更多
Diamond-copper composites were prepared by powder metallurgy,in which the diamond particles were pre-coated by magnetic sputtering with copper alloy containing a small amount of carbide forming elements(including B,Cr...Diamond-copper composites were prepared by powder metallurgy,in which the diamond particles were pre-coated by magnetic sputtering with copper alloy containing a small amount of carbide forming elements(including B,Cr,Ti,and Si).The influence of the carbide forming element additives on the microstructure and thermal conductivity of diamond composites was investigated.It is found that the composites fabricated with Cu-0.5B coated diamond particles has a relatively higher density and its thermal conductivity approaches 300 W/(m·K).Addition of 0.5%B improves the interfacial bonding and decreases thermal boundary resistance between diamond and Cu,while addition of 1%Cr makes the interfacial layer break away from diamond surface.The actual interfacial thermal conductivity of the composites with Cu-0.5B alloy coated on diamond is much higher than that of the Cu-1Cr layer,which suggests that the intrinsic thermal conductivity of the interfacial layer is an important factor for improving the thermal conductivity of the diamond composites.展开更多
A titanium coating fabricated via vacuum vapor deposition for diamond/Al composites was used to improve the interfacial bonding strength between diamond particles and Al matrix,and the Ti coated diamond particles rein...A titanium coating fabricated via vacuum vapor deposition for diamond/Al composites was used to improve the interfacial bonding strength between diamond particles and Al matrix,and the Ti coated diamond particles reinforced Al matrix composites were prepared by gas pressure infiltration for electronic packaging.The surface structure of the Ti coated diamond particles was investigated by XRD and SEM.The interfacial characteristics and fracture surfaces were observed by SEM and EDS.The coefficient of thermal expansion(CTE)of 50%(volume fraction)Ti coated diamond particles reinforced Al matrix composites was measured. The Ti coating on diamond before infiltration consists of inner TiC layer and outer TiO2 layer,and the inner TiC layer is very stable and cannot be removed during infiltration process.Fractographs of the composites illustrate that aluminum matrix fracture is the dominant fracture mechanism,and the stepped breakage of a diamond particle indicates strong interfacial bonding between the Ti coated diamond particles and the Al matrix.The measured low CTEs(5.07×10-6-9.27×10 -6K -1)of the composites also show the strong interfacial bonding between the Ti coated diamond particles and the Al matrix.展开更多
SiCp/Cu composites with a compact microstructure were successfully fabricated by vacuum hot-pressing method. In order to suppress the detrimental interfacial reactions and ameliorate the interfacial bonding between co...SiCp/Cu composites with a compact microstructure were successfully fabricated by vacuum hot-pressing method. In order to suppress the detrimental interfacial reactions and ameliorate the interfacial bonding between copper and silicon carbide, molybdenum coating was deposited on the surface of silicon carbide by magnetron sputtering method and crystallized heat-treatment. The effects of the interfacial design on the thermo-physical properties of Si Cp/Cu composites were studied in detail. Thermal conductivity and expansion test results showed that silicon carbide particles coated with uniform and compact molybdenum coating have improved the comprehensive thermal properties of the Si Cp/Cu composites. Furthermore, the adhesion of the interface between silicon carbide and copper was significantly strengthened after molybdenum coating. Si Cp/Cu composites with a maximum thermal conductivity of 274.056 W/(m·K) and a coefficient of thermal expansion of 9 ppm/K were successfully prepared when the volume of silicon carbide was about 50%, and these Si Cp/Cu composites have potential applications for the electronic packageing of the high integration electronic devices.展开更多
The thermal conductivity of diamond hybrid SiC/Cu,diamond/Cu and SiC/Cu composite were calculated by using the extended differential effective medium (DEM) theoretical model in this paper.The effects of the particle v...The thermal conductivity of diamond hybrid SiC/Cu,diamond/Cu and SiC/Cu composite were calculated by using the extended differential effective medium (DEM) theoretical model in this paper.The effects of the particle volume fraction,the particle size and the volume ratio of the diamond particles to the total particles on the thermal conductivity of the composite were studied.The DEM theoretical calculation results show that,for the diamond hybrid SiC/Cu composite,when the particle volume fraction is above 46% and the volume ratio of the diamond particles to the SiC particles is above 13:12,the thermal conductivity of the composite can reach 500 W·m-1·K-1.The thermal conduc-tivity of the composite has little change when the particle size is above 200μm.The experimental results show that Ti can improve the wettability of the SiC and Cu.The thermal conductivity of the diamond hybrid SiCTi/Cu is almost two times better than that of the diamond hybrid SiC/Cu.It is feasible to predict the thermal conductivity of the composite by DEM theoretical model.展开更多
A surface engineering approach for a novel pre-treatment of hard metal tool substrate for optimum adhesion of diamond coatings is presented. Firsfly, an alkaline solution was used to etch the WC grains to generate a r...A surface engineering approach for a novel pre-treatment of hard metal tool substrate for optimum adhesion of diamond coatings is presented. Firsfly, an alkaline solution was used to etch the WC grains to generate a rough surface for better mechanical interlocking. Subsequently, surface Co was removed by etching in acid solution. Then the hard metal substrate was boronized to form a compound interlayer which acted as an efficient diffusion barrier to prevent the outward diffusion of Co. Novel nano-microcrystalline composite diamond film coatings with a very smooth surface was deposited on the surface engineering pre-treated hard metal surface. Promising results of measurement in adhesion strength as well as field cutting tests have been obtained.展开更多
文摘The interfacial thermal conductance (ITC) and thermal conductivity (TC) of diamond/Al composites with various coatings were theoretically studied and discussed. A series of predictions and numerical analyses were performed to investigate the effect of thickness, sound velocity, and other parameters of coating layers on the ITC and TC. It is found that both the ITC and TC decline with increasing coating thickness, especially for the coatings with relatively low thermal conductivity. Nevertheless, if the coating thickness is close to zero, or quite a small value, the ITC and TC are mainly determined by the constants of the coating material. Under this condition, coatings such as Ni, TiC, Mo 2 C, SiC, and Si can significantly improve the ITC and TC of diamond/Al composites. By contrast, coatings like Ag will exert the negative effect. Taking the optimization of interfacial bonding into account, conductive carbides such as TiC or Mo 2 C with low thickness can be the most suitable coatings for diamond/Al composites.
基金supported by the Open Fund of the State Key Laboratory of Advanced Welding Production Technology in Harbin Institute of Technology,Chinathe Open Fund of the State Key Laboratory of Materials Processing and Die&Mould Technology in Huazhong University of Science and Technology,China
文摘To improve the sliding wear resistance of AZ91D magnesium alloy, Cu-based amorphous composite coatings made of CuaTTi34Zr11Nis and Cu47Ti34Zr11Ni8+20 wt pct SiC powders were fabricated on AZ91D magnesium alloy by laser cladding, respectively. SEM (scanning electron microscopy), EDS (energy dispersive X-ray spectroscopy), XRD (X-ray diffraction) and TEM (transmission electron microscopy) techniques were employed to study the phases of the coatings. The results show that the coatings mainly consist of amorphous phase and different intermetallic compounds. The reason of formation of amorphous phase and the function of SiC particles were explained in details.
基金Projects(51471084,61475117)supported by the National Natural Science Foundation of ChinaProject(13ZCZDGX01109)supported by Tianjin Municipal Science and Technology Commission of ChinaProject(20122BBE500031)supported by the Key Technology Project of Jiangxi Province in China
文摘To select the proper composition and obtain an overall material?microstructure?property relationship for Cu?Fe alloy, theeffect of Fe content on microstructure and properties of Cu?Fe-based composite coatings by laser induction hybrid rapid claddingwas investigated. Microstructure characterization of the composite coatings was tested utilizing SEM, XRD and EDS. Microhardnessmeasurement was executed to evaluate the mechanical properties of the composite coatings. The results show that for low Fe content,the composite coating presents a feature that Fe-rich equiaxed dendrites are embedded in the Cu-rich matrix. With increasing Fecontent, the Fe-rich particles are dispersed in the Cu-rich matrix. With further increasing Fe content, large amounts of Cu-richparticles are homogeneously dispersed in the interdendrite of the Fe-rich matrix. Correspondingly, the average microhardness of thecomposite coatings increases gradually with the increase of Fe content and the microhardness of Cu14.5Fe83Si2C0.5 coating is muchtwice higher than that of the substrate.
文摘The coating of Ni W P was deposited as base layer, and then the composite coating of Ni Ti(particles) Re(rare earth) was deposited subsequently on the surface of diamond using electroless plating by adding 2~3 μm Ti particles and trace rare earth salt to bath solution. Ti particles deposited on the surface of diamond were found by SEM and formation of TiC was verified by X ray diffraction analysis after heat treatment of the coatings in vacuum at 900 ℃. The binding strength between the coated diamond and the metal matrix was improved effectively in the diamond composite based on metal cement.
文摘Cu/diamond composites have been considered as the next generation of thermal management material for electronic packages and heat sinks applications. Cu/diamond composites with different volume fractions of diamond were successfully prepared by spark plasma sintering(SPS) method. The sintering temperatures and volume fractions(50%, 60% and 70%) of diamond were changed to investigate their effects on the relative density, homogeneity of the microstructure and thermal conductivity of the composites. The results show that the relative density, homogeneity of the microstructure and thermal conductivity of the composites increase with decreasing the diamond volume fraction; the relative density and thermal conductivity of the composites increase with increasing the sintering temperature. The thermal conductivity of the composites is a result of the combined effect of the volume fraction of diamond, the homogeneity and relative density of the composites.
基金Supported by the National Natural Science Foundation of China(51175260)the Fundamental Research Funds for the Central Universities(NP2012506)the Open Fund of Jiangsu Province Key Laboratory for Materials Tribology(kjsmcx0901)
文摘The wear behaviour of composite coatings is related to the nature of embedded particles.The effects of particle size on the wear behaviour of composite coatings are analyzed.Electroless nickel composite coatings containing diamond particles with the sizes in the range of 0—0.5,0.5—1,1—2μm are prepared.The surface morphology of diamond particles and composite coatings are observed by scanning electron microscopy(SEM).The wear tests of composite coatings are comparatively evaluated by sliding against a cemented tungsten carbide ball.The 3D morphology of worn scar is evaluated by using a 3Dprofiler.The results show that the hardness and wear resistance of composite coatings can increase with the increase of particle sizes.The mixture mechanism of adhesive wear and abrasive wear turn into single abrasive wear with the increase of particle sizes as well.The transformation of wear behaviour is mainly attributed to particle roles during wear process.
基金Project(51005154) supported by the National Natural Science Foundation of ChinaProject(12CG11) supported by the Chenguang Program of Shanghai Municipal Education Commission,ChinaProject(201104271) supported by the China Postdoctoral Science Foundation Special Funded Project
文摘A specific revised HFCVD apparatus and a novel process combining HFCVD and polishing technique were presented to deposit the micro-and nano-crystalline multilayered ultra-smooth diamond(USCD) film on the interior-hole surface of WC-Co drawing dies with aperture ranging from d1.0 mm to 60 mm.Characterization results indicate that the surface roughness values(Ra) in the entry zone,drawing zone and bearing zone of as-fabricated USCD coated drawing die were measured as low as 25.7,23.3 and 25.5 nm,respectively.Furthermore,the friction properties of USCD films were examined in both dry sliding and water-lubricating conditions,and the results show that the USCD film presents much superior friction properties.Its friction coefficients against ball-bearing steel,copper and silicon nitride balls(d4 mm),is always lower than that of microcrystalline diamond(MCD) or WC-Co sample,regardless of the lubricating condition.Meanwhile,it still presents competitive wear resistance with the MCD films.Finally,the working lifetime and performance of as-fabricated USCD coated drawing dies were examined under producing low-carbon steel pipes in dry-sliding and water-lubricating conditions.Under the water-lubricating drawing condition,its production significantly increases by about 20 times compared with the conventional WC-Co drawing dies.
基金supported by the National Natural Science Foundation of China(No.11802125)。
文摘Tungsten was plated on the surface of diamond by using thermal diffusion method.Different process parameters were employed to prepare the composites with tungsten,diamond and copper.The micro morphology of different samples was observed,and the thermal conductivity of samples was measured by laser flash method.The optimal process parameters for preparing diamond/copper composites with high thermal conductivity were investigated.The results indicated that plating tungsten on diamond could modify the interface bonding.When the diamond was plated for 60 min,the coating appeared intact,uniform and flat,and the thermal conductivity of the sample could reach as high as 486 W/(m·K).The integrity and uniformity were more important than thickness for the coating.When the tungsten-plated diamond was further annealed,the metallurgical bonding between the coating and the diamond was enhanced,and the thermal conductivity rose to 559 W/(m·K).
基金supported by the National Natural Science Foundation of China (No. 50971020)
文摘In this paper,diamond/CuCr and diamond/CuB composites were prepared using the pressure infiltration method.The physical property measurement system(PPMS)was adopted to evaluate the thermal conductivity of diamond/Cu and MoCu composites within the range of100–350 K,and a scanning electron microscope(SEM)was utilized to analyze the microstructure and fracture appearance of the materials.The research indicates that the thermal conductivity of diamond/Cu composite within the range of100–350 K is 2.5–3.0 times that of the existing MoCu material,and the low-temperature thermal conductivity of diamond/Cu composite presents an exponential relationship with the temperature.If B element was added to a Cu matrix and a low-temperature binder was used for prefabricated elements,favorable interfacial adhesion,relatively high interfacial thermal conductivity,and favorable low-temperature heat conduction characteristics would be apparent.
基金Project(82129)supported by the Innovative Foundation of Science and Technology of General Research Institute of Nonferrous Metals,China
文摘Diamond-copper composites were prepared by powder metallurgy,in which the diamond particles were pre-coated by magnetic sputtering with copper alloy containing a small amount of carbide forming elements(including B,Cr,Ti,and Si).The influence of the carbide forming element additives on the microstructure and thermal conductivity of diamond composites was investigated.It is found that the composites fabricated with Cu-0.5B coated diamond particles has a relatively higher density and its thermal conductivity approaches 300 W/(m·K).Addition of 0.5%B improves the interfacial bonding and decreases thermal boundary resistance between diamond and Cu,while addition of 1%Cr makes the interfacial layer break away from diamond surface.The actual interfacial thermal conductivity of the composites with Cu-0.5B alloy coated on diamond is much higher than that of the Cu-1Cr layer,which suggests that the intrinsic thermal conductivity of the interfacial layer is an important factor for improving the thermal conductivity of the diamond composites.
基金Project(60776019)supported by the National Natural Science Foundation of China
文摘A titanium coating fabricated via vacuum vapor deposition for diamond/Al composites was used to improve the interfacial bonding strength between diamond particles and Al matrix,and the Ti coated diamond particles reinforced Al matrix composites were prepared by gas pressure infiltration for electronic packaging.The surface structure of the Ti coated diamond particles was investigated by XRD and SEM.The interfacial characteristics and fracture surfaces were observed by SEM and EDS.The coefficient of thermal expansion(CTE)of 50%(volume fraction)Ti coated diamond particles reinforced Al matrix composites was measured. The Ti coating on diamond before infiltration consists of inner TiC layer and outer TiO2 layer,and the inner TiC layer is very stable and cannot be removed during infiltration process.Fractographs of the composites illustrate that aluminum matrix fracture is the dominant fracture mechanism,and the stepped breakage of a diamond particle indicates strong interfacial bonding between the Ti coated diamond particles and the Al matrix.The measured low CTEs(5.07×10-6-9.27×10 -6K -1)of the composites also show the strong interfacial bonding between the Ti coated diamond particles and the Al matrix.
基金Funded by the China Aerospace Science&Industry Corp
文摘SiCp/Cu composites with a compact microstructure were successfully fabricated by vacuum hot-pressing method. In order to suppress the detrimental interfacial reactions and ameliorate the interfacial bonding between copper and silicon carbide, molybdenum coating was deposited on the surface of silicon carbide by magnetron sputtering method and crystallized heat-treatment. The effects of the interfacial design on the thermo-physical properties of Si Cp/Cu composites were studied in detail. Thermal conductivity and expansion test results showed that silicon carbide particles coated with uniform and compact molybdenum coating have improved the comprehensive thermal properties of the Si Cp/Cu composites. Furthermore, the adhesion of the interface between silicon carbide and copper was significantly strengthened after molybdenum coating. Si Cp/Cu composites with a maximum thermal conductivity of 274.056 W/(m·K) and a coefficient of thermal expansion of 9 ppm/K were successfully prepared when the volume of silicon carbide was about 50%, and these Si Cp/Cu composites have potential applications for the electronic packageing of the high integration electronic devices.
基金financially supported by High-Technology Research and Development Program of China (No.2008AA03Z505)
文摘The thermal conductivity of diamond hybrid SiC/Cu,diamond/Cu and SiC/Cu composite were calculated by using the extended differential effective medium (DEM) theoretical model in this paper.The effects of the particle volume fraction,the particle size and the volume ratio of the diamond particles to the total particles on the thermal conductivity of the composite were studied.The DEM theoretical calculation results show that,for the diamond hybrid SiC/Cu composite,when the particle volume fraction is above 46% and the volume ratio of the diamond particles to the SiC particles is above 13:12,the thermal conductivity of the composite can reach 500 W·m-1·K-1.The thermal conduc-tivity of the composite has little change when the particle size is above 200μm.The experimental results show that Ti can improve the wettability of the SiC and Cu.The thermal conductivity of the diamond hybrid SiCTi/Cu is almost two times better than that of the diamond hybrid SiC/Cu.It is feasible to predict the thermal conductivity of the composite by DEM theoretical model.
文摘A surface engineering approach for a novel pre-treatment of hard metal tool substrate for optimum adhesion of diamond coatings is presented. Firsfly, an alkaline solution was used to etch the WC grains to generate a rough surface for better mechanical interlocking. Subsequently, surface Co was removed by etching in acid solution. Then the hard metal substrate was boronized to form a compound interlayer which acted as an efficient diffusion barrier to prevent the outward diffusion of Co. Novel nano-microcrystalline composite diamond film coatings with a very smooth surface was deposited on the surface engineering pre-treated hard metal surface. Promising results of measurement in adhesion strength as well as field cutting tests have been obtained.