期刊文献+
共找到827篇文章
< 1 2 42 >
每页显示 20 50 100
Diamond-Like Carbon Depositing on the Surface of Polylactide Membrane for Prevention of Adhesion Formation During Tendon Repair
1
作者 Yao Xiao Zaijin Tao +8 位作者 Yufeng Ju Xiaolu Huang Xinshu Zhang Xiaonan Liu Pavel A.Volotovski Chao Huang Hongqi Chen Yaozhong Zhang Shen Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期478-499,共22页
Post-traumatic peritendinous adhesion presents a significant challenge in clinical medicine.This study proposes the use of diamond-like carbon(DLC)deposited on polylactic acid(PLA)membranes as a biophysical mechanism ... Post-traumatic peritendinous adhesion presents a significant challenge in clinical medicine.This study proposes the use of diamond-like carbon(DLC)deposited on polylactic acid(PLA)membranes as a biophysical mechanism for anti-adhesion barrier to encase ruptured tendons in tendon-injured rats.The results indicate that PLA/DLC composite membrane exhibits more efficient anti-adhesion effect than PLA membrane,with histological score decreasing from 3.12±0.27 to 2.20±0.22 and anti-adhesion effectiveness increasing from 21.61%to 44.72%.Mechanistically,the abundant C=O bond functional groups on the surface of DLC can reduce reactive oxygen species level effectively;thus,the phosphorylation of NF-κB and M1 polarization of macrophages are inhibited.Consequently,excessive inflammatory response augmented by M1 macrophage-originated cytokines including interleukin-6(IL-6),interleukin-1β(IL-1β),and tumor necrosis factor-α(TNF-α)is largely reduced.For biocompatibility evaluation,PLA/DLC membrane is slowly absorbed within tissue and displays prolonged barrier effects compared to traditional PLA membranes.Further studies show the DLC depositing decelerates the release of degradation product lactic acid and its induction of macrophage M2 polarization by interfering esterase and PLA ester bonds,which further delays the fibrosis process.It was found that the PLA/DLC membrane possess an efficient biophysical mechanism for treatment of peritendinous adhesion. 展开更多
关键词 diamond-like carbon Reactive oxygen species scavenging Foreign body reaction BIODEGRADATION ANTIOXIDANT Peritendinous adhesion
下载PDF
Structure design and electrochemical properties of carbon-based single atom catalysts in energy catalysis:A review
2
作者 Shuqi Li Xincheng Lu +8 位作者 Shuling Liu Jingjing Zhou Yanyan Liu Huanhuan Zhang Ruofan Shen Kang Sun Jianchun Jiang Yongfeng Wang Baojun Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期196-236,共41页
Single atom catalysts(SACs) possessing regulated electronic structure, high atom utilization, and superior catalytic efficiency have been studied in almost all fields in recent years. Carbon-based supporting SACs are ... Single atom catalysts(SACs) possessing regulated electronic structure, high atom utilization, and superior catalytic efficiency have been studied in almost all fields in recent years. Carbon-based supporting SACs are becoming popular materials because of their low cost, high electron conductivity, and controllable surface property. At the stage of catalysts preparation, the rational design of active sites is necessary for the substantial improvement of activity of catalysts. To date, the reported design strategies are mainly about synthesis mechanism and synthetic method. The level of understanding of design strategies of carbon-based single atom catalysts is requiring deep to be paved. The design strategies about manufacturing defects and coordination modulation of catalysts are presented. The design strategies are easy to carry out in the process of drawing up preparation routes. The components of carbon-based SACs can be divided into two parts: active site and carbon skeleton. In this review, the manufacture of defects and coordination modulation of two parts are introduced, respectively. The structure features and design strategies from the active sites and carbon skeletons to the overall catalysts are deeply discussed.Then, the structural design of different nano-carbon SACs is introduced systematically. The characterization of active site and carbon skeleton and the detailed mechanism of reaction process are summarized and analyzed. Next, the applications in the field of electrocatalysis for oxygen conversion and hydrogen conversion are illustrated. The relationships between the superior performance and the structure of active sites or carbon skeletons are discussed. Finally, the conclusion of this review and prospects on the abundant space for further promotion in broader fields are depicted. This review highlights the design and preparation thoughts from the parts to the whole. The detailed and systematic discussion will provide useful guidance for design of SACs for readers. 展开更多
关键词 carbon materials Coordination chemistry Defective structure Energy catalysis Single atom catalysts
下载PDF
Role of atomic transverse migration in growth of diamond-like carbon films
3
作者 马天宝 胡元中 王慧 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第9期2798-2802,共5页
The growth of diamond-like carbon (DLC) films is studied using molecular dynamics simulations. The effect of impact angle on film structure is carefully studied, which shows that the transverse migration of the inci... The growth of diamond-like carbon (DLC) films is studied using molecular dynamics simulations. The effect of impact angle on film structure is carefully studied, which shows that the transverse migration of the incident atoms is the main channel of film relaxation. A transverse-migration-induced film relaxation model is presented to elucidate the process of film relaxation which advances the original model of subplantation. The process of DLC film growth on a rough surface is also investigated, as well as the evolution of microstructure and surface morphology of the film. A preferential-to-homogeneous growth mode and a smoothing of the film are observed, which are due to the transverse migration of the incident atoms. 展开更多
关键词 diamond-like carbon molecular dynamics
下载PDF
Electron Injection Enhancement by Diamond-Like Carbon Film in Polymer Electroluminescence Devices
4
作者 李宏建 闫玲玲 +4 位作者 黄伯云 易丹青 胡锦 何英旋 彭景翠 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2006年第1期30-34,共5页
A diamond-like carbon (DLC) film is deposited as an electron injection layer between the polymer light-emitting layer(MEH-PPV) and aluminum (Al) cathode electrode in polymer electroluminescence devices (PLEDs)... A diamond-like carbon (DLC) film is deposited as an electron injection layer between the polymer light-emitting layer(MEH-PPV) and aluminum (Al) cathode electrode in polymer electroluminescence devices (PLEDs) using a radio frequency plasma deposition system. The source material of the DLC is n-butylamine. The devices consist of indium tin oxide (ITO)/MEH-PPV/DLC/Al. Electron injection properties are investigated through I-V characteristics,and the mechanism of electron injection enhancement due to a thin DLC layer has been studied. It is found that: (1) a DLC layer thinner than 1.0nm leads to a higher turn-on voltage and decreased electroluminescent (EL) efficiency; (2) a 5.0nm DLC layer significantly enhances the electron injection and results in the lowest turn-on voltage and the highest EL efficiency; (3) DLC layer that exceeds 5.0nm results in poor device performance;and(4) EL emission can hardly be detected when the layer exceeds 10.0nm. The properties of ITO/MEH-PPV/DLC/Al and ITO/MEH-PPV/LiF/Al are investigated comparatively. 展开更多
关键词 diamond-like carbon polymer electroluminescence device electron injection enhancement
下载PDF
Single‐atomic Co‐B_(2)N_(2)sites anchored on carbon nanotube arrays promote lithium polysulfide conversion in lithium-sulfur batteries 被引量:5
5
作者 Zhifeng Wang Yajing Yan +8 位作者 Yongguang Zhang Yanxu Chen Xianyun Peng Xin Wang Weimin Zhao Chunling Qin Qian Liu Xijun Liu Zhongwei Chen 《Carbon Energy》 SCIE EI CAS CSCD 2023年第11期31-43,共13页
Due to low cost,high capacity,and high energy density,lithium–sulfur(Li–S)batteries have attracted much attention;however,their cycling performance was largely limited by the poor redox kinetics and low sulfur utili... Due to low cost,high capacity,and high energy density,lithium–sulfur(Li–S)batteries have attracted much attention;however,their cycling performance was largely limited by the poor redox kinetics and low sulfur utilization.Herein,predicted by density functional theory calculations,single‐atomic Co‐B2N2 site‐imbedded boron and nitrogen co‐doped carbon nanotubes(SA‐Co/BNC)were designed to accomplish high sulfur loading,fast kinetic,and long service period Li–S batteries.Experiments proved that Co‐B2N2 atomic sites can effectively catalyze lithium polysulfide conversion.Therefore,the electrodes delivered a specific capacity of 1106 mAh g−1 at 0.2 C after 100 cycles and exhibited an outstanding cycle performance over 1000 cycles at 1 C with a decay rate of 0.032%per cycle.Our study offers a new strategy to couple the combined effect of nanocarriers and single‐atomic catalysts in novel coordination environments for high‐performance Li–S batteries. 展开更多
关键词 carbon nanotubes coordination environment engineering density functional theory calculation lithium-sulfur batteries single‐atom catalys
下载PDF
Improved Plasmonic Hot‑Electron Capture in Au Nanoparticle/Polymeric Carbon Nitride by Pt Single Atoms for Broad‑Spectrum Photocatalytic H_(2)Evolution 被引量:4
6
作者 Manyi Gao Fenyang Tian +3 位作者 Xin Zhang Zhaoyu Chen Weiwei Yang Yongsheng Yu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第8期423-435,共13页
ABSTRACT Rationally designing broad-spectrum photocatalysts to harvest whole visible-light region photons and enhance solar energy conversion is a“holy grail”for researchers,but is still a challenging issue.Herein,b... ABSTRACT Rationally designing broad-spectrum photocatalysts to harvest whole visible-light region photons and enhance solar energy conversion is a“holy grail”for researchers,but is still a challenging issue.Herein,based on the common polymeric carbon nitride(PCN),a hybrid co-catalysts system comprising plasmonic Au nanoparticles(NPs)and atomically dispersed Pt single atoms(PtSAs)with different functions was constructed to address this challenge.For the dual co-catalysts decorated PCN(PtSAs–Au_(2.5)/PCN),the PCN is photoexcited to generate electrons under UV and short-wavelength visible light,and the synergetic Au NPs and PtSAs not only accelerate charge separation and transfer though Schottky junctions and metal-support bond but also act as the co-catalysts for H_(2) evolution.Furthermore,the Au NPs absorb long-wavelength visible light owing to its localized surface plasmon resonance,and the adjacent PtSAs trap the plasmonic hot-electrons for H_(2) evolution via direct electron transfer effect.Consequently,the PtSAs–Au_(2.5)/PCN exhibits excellent broad-spectrum photocatalytic H_(2) evolution activity with the H_(2) evolution rate of 8.8 mmol g^(−1) h^(−1) at 420 nm and 264μmol g^(−1) h^(−1) at 550 nm,much higher than that of Au_(2.5)/PCN and PtSAs–PCN,respectively.This work provides a new strategy to design broad-spectrum photocatalysts for energy conversion reaction. 展开更多
关键词 Polymeric carbon nitride Au nanoparticles Pt single atoms Photocatalytic H2 evolution Broad-spectrum photocatalysts
下载PDF
Dual atomic catalysts from COF-derived carbon for CO_(2)RR by suppressing HER through synergistic effects 被引量:1
7
作者 Minghao Liu Sijia Liu +7 位作者 Qing Xu Qiyang Miao Shuai Yang Svenja Hanson George Zheng Chen Jun He Zheng Jiang Gaofeng Zeng 《Carbon Energy》 SCIE CSCD 2023年第6期92-103,共12页
The electrochemical carbon dioxide reduction reaction(CO_(2)RR)for highvalue-added products is a promising strategy to tackle excessive CO_(2) emissions.However,the activity of and selectivity for catalysts for CO_(2)... The electrochemical carbon dioxide reduction reaction(CO_(2)RR)for highvalue-added products is a promising strategy to tackle excessive CO_(2) emissions.However,the activity of and selectivity for catalysts for CO_(2)RR still need to be improved because of the competing reaction(hydrogen evolution reaction).In this study,for the first time,we have demonstrated dual atomic catalytic sites for CO_(2)RR from a core-shell hybrid of the covalent-organic framework and the metal-organic framework.Due to abundant dual atomic sites(with CoN_(4)O and ZnN_(4) of 2.47 and 11.05 wt.%,respectively)on hollow carbon,the catalyst promoted catalysis of CO_(2)RR,with the highest Faradic efficiency for CO of 92.6%at-0.8 V and a turnover frequency value of 1370.24 h^(-1) at-1.0 V.More importantly,the activity and selectivity of the catalyst were well retained for 30 h.The theoretical calculation further revealed that CoN_(4)O was the main site for CO_(2)RR,and the activity of and selectivity for Zn sites were also improved because of the synergetic roles. 展开更多
关键词 carbon dioxide reduction reaction covalent-organic frameworks dual atomic catalysts metal-organic frameworks single-atom catalysts
下载PDF
Metal-organic framework-based single-atom electro-/ photocatalysts: Synthesis, energy applications, and opportunities 被引量:2
8
作者 Munir Ahmad Jiahui Chen +10 位作者 Jianwen Liu Yan Zhang Zhongxin Song Shahzad Afzal Waseem Raza Liaqat Zeb Andleeb Mehmood Arshad Hussain Jiujun Zhang Xian-Zhu Fu Jing-Li Luo 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期1-43,共43页
Single-atom catalysts(SACs)have gained substantial attention because of their exceptional catalytic properties.However,the high surface energy limits their synthesis,thus creating significant challenges for further de... Single-atom catalysts(SACs)have gained substantial attention because of their exceptional catalytic properties.However,the high surface energy limits their synthesis,thus creating significant challenges for further development.In the last few years,metal–organic frameworks(MOFs)have received significant consideration as ideal candidates for synthesizing SACs due to their tailorable chemistry,tunable morphologies,high porosity,and chemical/thermal stability.From this perspective,this review thoroughly summarizes the previously reported methods and possible future approaches for constructing MOF-based(MOF-derived-supported and MOF-supported)SACs.Then,MOF-based SAC's identification techniques are briefly assessed to understand their coordination environments,local electronic structures,spatial distributions,and catalytic/electrochemical reaction mechanisms.This review systematically highlights several photocatalytic and electrocatalytic applications of MOF-based SACs for energy conversion and storage,including hydrogen evolution reactions,oxygen evolution reactions,O_(2)/CO_(2)/N_(2) reduction reactions,fuel cells,and rechargeable batteries.Some light is also shed on the future development of this highly exciting field by highlighting the advantages and limitations of MOF-based SACs. 展开更多
关键词 carbon energy generation MOF-derived-supported MOF-supported single atoms
下载PDF
Micro/Nanomechanical and Tribological Properties of Thin Diamond-Like Carbon Coatings 被引量:4
9
作者 张泰华 刘东旭 +2 位作者 郇勇 杨业敏 王秀兰 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2003年第1期47-51,共5页
The diamond-like carbon (DLC) films with different thicknesses on 9Crl8bearing steels were prepared using vacuum magnetic-filtering arc plasma deposition. Vickersindentation, nanoin-dentation and nanoscratch tests wer... The diamond-like carbon (DLC) films with different thicknesses on 9Crl8bearing steels were prepared using vacuum magnetic-filtering arc plasma deposition. Vickersindentation, nanoin-dentation and nanoscratch tests were used to characterize the DLC films with awide range of applied loads. Mechanical and tribological behaviors of these submicron films wereinvestigated and interpreted. The hardnesses of 9Cr18 and DLC. determined by nanoindentation, areapproximately 8GPa and 60GPa respectively; their elastic moduli are approximately 250GPa and 600GParespectively. The friction coefficients of 9Cr18, DLC, organic coating, determined by nanoscratch,are approximately 0. 35, 0. 20 and 0. 13 respectively. It is demonstrated that nanoindentation andnanoscratch tests can provide more information about the near-surface elastic-plastic deformation,friction and wear properties. The correlation of mechanical properties and scratch resistance of DLCfilms on 9Cr18 steels can provide an assessment for the load-carrying capacity and wear resistance. 展开更多
关键词 diamond-like carbon MICROHARDNESS NANOINDENTATION NANOSCRATCH solidlubricating
下载PDF
Properties of polydimethylsiloxane hydrophobic modified duplex microarc oxidation/diamond-like carbon coatings on AZ31B Mg alloy 被引量:5
10
作者 Xue-Jun Cui Chuang-Ming Ning +3 位作者 Guang-An Zhang Lun-Lin Shang Li-Ping Zhong Ying-Jun Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第4期1291-1303,共13页
A reliable,high-performance coating procedure was developed using PDMS to modify a duplex MAO/DLC coating on an AZ31B Mg alloy.First,the duplex MAO/DLC coating was fabricated via a combined MAO and unbalanced magnetro... A reliable,high-performance coating procedure was developed using PDMS to modify a duplex MAO/DLC coating on an AZ31B Mg alloy.First,the duplex MAO/DLC coating was fabricated via a combined MAO and unbalanced magnetron sputter process.Subsequently,a PDMS solution was used to modify the MAO/DLC coating via a conventional dip-coating method.The surface characteristics,bond strength,hardness,tribological behaviour,and corrosion resistance of the coated samples were evaluated via SEM,CA,Raman spectroscopy,friction and wear behaviour,polarisation curve,and NSS tests.The PDMS modification reduced the HIT of MAO/DLC coating from 15.96 to 8.34GPa;this is ascribed to the penetration of PDMS,which has good rheological properties to form a viscoelastic Si-based organic polymer layer on the MAO/DLC coating.However,the PDMS-modified MAO/DLC coating was denser,hydrophobic,and had higher bond strength compared with MAO-and MAO/DLC-coated samples.Moreover,the PDMS modification reduced the COF and wear rate of the duplex MAO/DLC coating.This indicates that the PDMS improved the tribological behaviour owing to the transferred Si oxide that originated from the Si-O network of the PDMS,as well as the low graphitisation of the DLC layer during sliding.Furthermore,the corrosion current density of the MAO/DLC-coated sample modified by PDMS for 10min decreased by two order of magnitude compared with that of the MAO/DLC-coated sample but by five orders of magnitude compared with that of the bare substrate.The NSS tests proved that the PDMS layer slowed the corrosion of the Mg alloy under long-term service,enhancing the corrosion protection efficiency.The results are attributed to the high bond strength and lubricant MAO/DLC layer,and the dual role of sealing and hydrophobicity of PDMS.Therefore,PDMS modification is promising for the fabrication of protective materials for Mg alloys that require corrosion and wear resistance. 展开更多
关键词 Magnesium alloy Microarc oxidation diamond-like carbon POLYDIMETHYLSILOXANE Tribological behaviour Corrosion resistance
下载PDF
Corrosion performance and tribological behavior of diamond-like carbon based coating applied on Ni−Al−bronze alloy 被引量:6
11
作者 Seyed Elias MOUSAVI Nastaran NAGHSHEHKESH +2 位作者 Mohabbat AMIRNEJAD Hossein SHAMMAKHI Ali SONBOLI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第2期499-511,共13页
The effect of diamond-like carbon(DLC)coating(fabricated by cathodic arc deposition)on mechanical properties,tribological behavior and corrosion performance of the Ni−Al−bronze(NAB)alloy was investigated.Nano-hardness... The effect of diamond-like carbon(DLC)coating(fabricated by cathodic arc deposition)on mechanical properties,tribological behavior and corrosion performance of the Ni−Al−bronze(NAB)alloy was investigated.Nano-hardness and pin-on-plate test showed that DLC coating had a greater hardness compared with NAB alloy.Besides,the decrease in friction coefficient from 0.2 for NAB substrate to 0.13 for the DLC-coated sample was observed.Potentiodynamic polarization and EIS results showed that the corrosion current density decreased from 2.5μA/cm2 for bare NAB alloy to 0.14μA/cm2 for DLC-coated sample in 3.5 wt.%NaCl solution.Moreover,the charge transfer resistance at the substrate−electrolyte interface increased from 3.3 kΩ·cm2 for NAB alloy to 120.8 kΩ·cm2 for DLC-coated alloy,which indicated an increase in corrosion resistance due to the DLC coating. 展开更多
关键词 diamond-like carbon coating Ni−Al−bronze alloy tribological behavior corrosion resistance nanohardness microstructure
下载PDF
Preparation of Diamond-like Carbon Films on the Surface of Ti Alloy by Electro-deposition 被引量:3
12
作者 Fenglei SHEN Hongwei WANG Dijiang WEN School of Materials Engineering,Suzhou University,Suzhou 215021,China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第3期367-368,共2页
In this paper, diamond-like carbon (DLC) films were deposited on Ti alloy by electro-deposition. DLC films were brown andcomposed of the compact grains whose diameter was about 400 nm. Examined by XPS, the main compos... In this paper, diamond-like carbon (DLC) films were deposited on Ti alloy by electro-deposition. DLC films were brown andcomposed of the compact grains whose diameter was about 400 nm. Examined by XPS, the main composition of the filmswas carbon. In the Raman spectrum, there were a broad peak at 1350 cm^(-1) and a broad peak at 1600 cm^(-1), which indicatedthat the films were DLC films. 展开更多
关键词 diamond-like carbon film ELECTRO-DEPOSITION Ti alloy SURFACE
下载PDF
Effect of N-ion implantation and diamond-like carbon coating on fretting wear behaviors of Ti6Al7Nb in artificial saliva 被引量:4
13
作者 Xin-ying ZHENG Ya-rong ZHANG Bao-rong ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第5期1071-1080,共10页
The tribology behaviors of Ti6Al7Nb,its alloy with N-ion implantation,and its alloy with diamond-like carbon(DLC)coating were investigated in artificial saliva.Fretting wear tests of untreated,N-ion implanted and DLC ... The tribology behaviors of Ti6Al7Nb,its alloy with N-ion implantation,and its alloy with diamond-like carbon(DLC)coating were investigated in artificial saliva.Fretting wear tests of untreated,N-ion implanted and DLC coated Ti6Al7Nb alloys plate against a Si3N4ball were carried out on a reciprocating sliding fretting wear test rig.Based on the analysis of X-ray diffraction,Raman spectroscopy,3-D profiler,SEM morphologies and frictional kinetics behavior analysis,the damage behavior of surface modification layer was discussed in detail.The results indicated that the fretting wear behavior of Ti6Al7Nb alloy with N-ion implantation was increased with the dose increase of the implanted nitrogen ions.Moreover,the DLC-coated Ti6Al7Nb alloy with low ion implantation could improve the fretting wear behavior greatly.In addition,the Ti6Al7Nb with DLC coating had better ncorrosion resistance due to the special compact structure.All results suggested that the Ti6Al7Nb with DLC coating had better wear resistance than that with N-ion implantation in artificial saliva. 展开更多
关键词 Ti6Al7Nb alloy ion implantation diamond-like carbon coating fretting wear behavior
下载PDF
Studies of diamond-like carbon (DLC) films deposited on stainless steel substrate with Si/SiC intermediate layers 被引量:3
14
作者 王静 刘贵昌 +2 位作者 王立达 邓新绿 徐军 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第8期3108-3114,共7页
In this work, diamond-like carbon (DLC) films were deposited on stainless steel substrates with Si/SiC intermediate layers by combining plasma enhanced sputtering physical vapour deposition (PEUMS-PVD) and microwa... In this work, diamond-like carbon (DLC) films were deposited on stainless steel substrates with Si/SiC intermediate layers by combining plasma enhanced sputtering physical vapour deposition (PEUMS-PVD) and microwave electron cyclotron resonance plasma enhanced chemical vapour deposition (MW-ECRPECVD) techniques. The influence of substrate negative self-bias voltage and Si target power on the structure and nano-mechanical behaviour of the DLC films were investigated by Raman spectroscopy, nano-indentation, and the film structural morphology by atomic force microscopy (AFM). With the increase of deposition bias voltage, the G band shifted to higher wave-number and the integrated intensity ratio ID/IG increased. We considered these as evidences for the development of graphitization in the films. As the substrate negative self-bias voltage increased, particle bombardment function was enhanced and the sp^3-bond carbon density reducing, resulted in the peak values of hardness (H) and elastic modulus (E). Silicon addition promoted the formation of sp^3 bonding and reduced the hardness. The incorporated Si atoms substituted sp^2- bond carbon atoms in ring structures, which promoted the formation of sp^3-bond. The structural transition from C-C to C-Si bonds resulted in relaxation of the residual stress which led to the decrease of internal stress and hardness. The results of AFM indicated that the films was dense and homogeneous, the roughness of the films was decreased due to the increase of substrate negative self-bias voltage and the Si target power. 展开更多
关键词 diamond-like carbon (DLC) stainless steel substrate intermediate layers
下载PDF
Deposition of Diamond-Like Carbon on Inner Surface by Hollow Cathode Discharge 被引量:2
15
作者 李世超 何锋 +1 位作者 郭琦 欧阳吉庭 《Plasma Science and Technology》 SCIE EI CAS CSCD 2014年第1期63-67,共5页
A cylindrical hollow cathode discharge (HCD) in CH4/Ar gas mixture at pressure of 20-30 Pa was used to deposit diamond-like carbon (DLC) films on the inner surface of a stainless steel tube. The characteristics of... A cylindrical hollow cathode discharge (HCD) in CH4/Ar gas mixture at pressure of 20-30 Pa was used to deposit diamond-like carbon (DLC) films on the inner surface of a stainless steel tube. The characteristics of the HCD including the voltage-current curves, the plasma im- ages and the optical emission spectrum (OES) were measured in Ar and CHn/Ar mixtures. The properties of DLC films prepared under different conditions were analyzed by means of Raman spectroscopy and scanning electron microscopy (SEM). The results show that the electron exci- tation temperature of HCD plasma is about 2400 K. DLC films can be deposited on the inner surface of tubes. The ratio of sp3/sp2 bonds decreases with the applied voltage and the deposition time. The optimizing CH4 content was found to be around CH4/Ar =1/5 for good quality of DLC films in the present system. 展开更多
关键词 diamond-like carbon hollow cathode discharge film deposition inner surface
下载PDF
Tribological properties of diamond-like carbon films deposited bv pulsed laser arc deposition 被引量:2
16
作者 张振宇 路新春 雒建斌 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第12期3790-3797,共8页
A novel method, pulsed laser arc deposition combining the advantages of pulsed laser deposition and cathode vacuum arc techniques, was used to deposit the diamond-like carbon (DLC) nanofilms with different thickness... A novel method, pulsed laser arc deposition combining the advantages of pulsed laser deposition and cathode vacuum arc techniques, was used to deposit the diamond-like carbon (DLC) nanofilms with different thicknesses. Spectroscopic ellipsometer, Auger electron spectroscopy, x-ray photoelectron spectroscopy, Raman spectroscopy, atomic force microscopy, scanning electron microscopy and multi-functional friction and wear tester were employed to investigate the physical and tribological properties of the deposited films. The results show that the deposited films are amorphous and the sp2, sp3 and C-O bonds at the top surface of the films are identified. The Raman peak intensity and surface roughness increase with increasing film thickness. Friction coefficients are about 0.1, 0.15, 0.18, when the film thicknesses are in the range of 17-21 nm, 30-57 nm, 67-123 nm, respectively. This is attributed to the united effects of substrate and surface roughness. The wear mechanism of DLC films is mainly abrasive wear when film thickness is in the range of 17-41 nm, while it transforms to abrasive and adhesive wear, when the film thickness lies between 72 and 123 nm. 展开更多
关键词 pulsed laser arc deposition diamond-like carbon tribological property physical property
下载PDF
Single-Atom Lithiophilic Sites Confined within Ordered Porous Carbon for Ultrastable Lithium Metal Anodes
17
作者 Wenzhong Huang Shanlin Liu +3 位作者 Ruohan Yu Liang Zhou Zhenhui Liu Liqiang Mai 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期366-372,共7页
Attributing to the high specific capacity and low electrochemical reduction potential,lithium(Li)metal is regarded as the most promising anode for high-energy Li batteries.However,the growth of lithium dendrites and h... Attributing to the high specific capacity and low electrochemical reduction potential,lithium(Li)metal is regarded as the most promising anode for high-energy Li batteries.However,the growth of lithium dendrites and huge volume change seriously limit the development of lithium metal batteries.To overcome these challenges,an ordered mesoporous N-doped carbon with lithiophilic single atoms is proposed to induce uniform nucleation and deposition of Li metal.Benefiting from the synergistic effects of interconnected three-dimensional ordered mesoporous structures and abundant lithiophilic single-atom sites,regulated local current density and rapid mass transfer can be achieved,leading to the uniform Li deposition with inhibition of dendrites and buffered volume expansion.As a result,the as-fabricated anode exhibits a high CE of 99.8%for 200 cycles.A stable voltage hysteresis of 14 mV at 5 mA cm^(−2)could be maintained for more than 1330 h in the symmetric cell.Furthermore,the full cell coupled with commercial LiFePO_(4)exhibits high reversible capacity of 108 mAh g^(−1)and average Coulombic efficiency of 99.8%from 5th to 350th cycles at 1 C.The ordered mesoporous carbon host with abundant lithiophilic single-atom sites delivers new inspirations into rational design of high-performance Li metal anodes. 展开更多
关键词 lithiophilic lithium metal battery ordered mesoporous carbon single atom
下载PDF
Influence of Microwave Power on the Properties of Hydrogenated Diamond-Like Carbon Films Prepared by ECR Plasma Enhanced DC Magnetron Sputtering 被引量:2
18
作者 汝丽丽 黄建军 +1 位作者 高亮 齐冰 《Plasma Science and Technology》 SCIE EI CAS CSCD 2010年第5期551-555,共5页
Electron cyclotron resonance (ECR) plasma was applied to enhance the direct current magnetron sputtering to prepare hydrogenated diamond-like carbon (H-DLC) films. For different microwave powers, both argon and hy... Electron cyclotron resonance (ECR) plasma was applied to enhance the direct current magnetron sputtering to prepare hydrogenated diamond-like carbon (H-DLC) films. For different microwave powers, both argon and hydrogen gas are introduced separately as the ECR working gas to investigate the influence of microwave power on the microstructure and electrical property of the H-DLC films deposited on P-type silicon substrates. A series of characterization methods including the Raman spectrum and atomic force microscopy are used. Results show that, within a certain range, the increase in microwave power affects the properties of the thin films, namely the sp3 ratio, the hardness, the nanoparticle size and the resistivity all increase while the roughness decreases with the increase in microwave power. The maximum of resistivity amounts to 1.1×10^9 Ω.cm. At the same time it is found that the influence of microwave power on the properties of H-DLC films is more pronounced when argon gas is applied as the ECR working gas, compared to hydrogen gas. 展开更多
关键词 hydrogenated diamond-like carbon films ECR plasma magnetron sputtering microwave power
下载PDF
Structures of Diamond-Like Carbon Films 被引量:1
19
作者 刘东平 陈宝祥 刘艳红 《Plasma Science and Technology》 SCIE EI CAS CSCD 2006年第3期285-291,共7页
The structures of diamond-like carbon (DLC) films, including a-C:H, a-C, ta-C:H and ta-C films have been investigated as a random covalent network with a dense film structure. The results show that sp2 C in a-C:H... The structures of diamond-like carbon (DLC) films, including a-C:H, a-C, ta-C:H and ta-C films have been investigated as a random covalent network with a dense film structure. The results show that sp2 C in a-C:H and a-C films tends to form olefinic and aromatic groups while sp^3 C in ta-C:H and ta-C films tends to form single or multiple sixfold groups. The hydrogen atoms in hydrogenated DLC films contribute to stabilizing the carbon skeletal networks. The film structures are well related to their properties such as optical gaps, density and hardness. The results also indicate that the high density and the extreme hardness of ta-C films are attributed to the forming of large sp^3 C bonded sixfold groups. 展开更多
关键词 diamond-like carbon STRUCTURE PROPERTIES
下载PDF
Structure and Mechanical Performance of Nitrogen Doped Diamond-like Carbon Films 被引量:1
20
作者 Huayu ZHANG Liang-xue LIU +2 位作者 Yulei WANG Hongtao MA Fanxin LIU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第4期491-494,共4页
Nitrogen doped diamond-like carbon (DLC:N) films were prepared by electron cyclotron resonance chemical vapor deposition (ECR-CVD) on polycrystalline Si chips. Film thickness is about 50 nm. Auger electron spectr... Nitrogen doped diamond-like carbon (DLC:N) films were prepared by electron cyclotron resonance chemical vapor deposition (ECR-CVD) on polycrystalline Si chips. Film thickness is about 50 nm. Auger electron spectroscopy (AES) was used to evaluate nitrogen content, and increasing N2 flow improved N content from 0 to 7.6%. Raman and X-ray photoelectron spectroscopy (XPS) analysis results reveal CN-sp^3C and N-sp^2C structure. With increasing the N2 flow, sp^3C decreases from 73.74% down to 42.66%, and so does N-sp^3C from 68.04% down to 20.23%. The hardness decreases from 29.18 GPa down to 19.74 GPa, and the Young's modulus from 193.03 GPa down to 144.52 GPa. 展开更多
关键词 Nitrogen doped diamond-like carbon films ECR-CVD STRUCTURE Mechanical performance
下载PDF
上一页 1 2 42 下一页 到第
使用帮助 返回顶部