Electron cyclotron resonance (ECR) plasma was applied to enhance the direct current magnetron sputtering to prepare hydrogenated diamond-like carbon (H-DLC) films. For different microwave powers, both argon and hy...Electron cyclotron resonance (ECR) plasma was applied to enhance the direct current magnetron sputtering to prepare hydrogenated diamond-like carbon (H-DLC) films. For different microwave powers, both argon and hydrogen gas are introduced separately as the ECR working gas to investigate the influence of microwave power on the microstructure and electrical property of the H-DLC films deposited on P-type silicon substrates. A series of characterization methods including the Raman spectrum and atomic force microscopy are used. Results show that, within a certain range, the increase in microwave power affects the properties of the thin films, namely the sp3 ratio, the hardness, the nanoparticle size and the resistivity all increase while the roughness decreases with the increase in microwave power. The maximum of resistivity amounts to 1.1×10^9 Ω.cm. At the same time it is found that the influence of microwave power on the properties of H-DLC films is more pronounced when argon gas is applied as the ECR working gas, compared to hydrogen gas.展开更多
Diamond-like carbon (DLC) films were synthesized by plasma immersion ion implantation and deposition (PIIID) on 9Cr18 bearing steel surface. Influences of working gas pressure and pulse width of the bias voltage on pr...Diamond-like carbon (DLC) films were synthesized by plasma immersion ion implantation and deposition (PIIID) on 9Cr18 bearing steel surface. Influences of working gas pressure and pulse width of the bias voltage on properties of the thin film were investigated. The chemical compositions of the as-deposited films were characterized by Raman spectroscopy. The micro-hardness, friction and wear behavior, corrosion resistance of the samples were evaluated, respectively. Compared with uncoated substrates, micro-hardness results reveal that the maximum is increased by 88.7%. In addition, the friction coefficient decreases to about 0.1, and the corrosion resistance of treated coupons surface are improved significantly.展开更多
A high growth rate fabrication of diamond-like carbon(DLC)films at room temperature was achieved by helicon wave plasma chemical vapor deposition(HWP-CVD)using Ar/CH4gas mixtures.The microstructure and morphology ...A high growth rate fabrication of diamond-like carbon(DLC)films at room temperature was achieved by helicon wave plasma chemical vapor deposition(HWP-CVD)using Ar/CH4gas mixtures.The microstructure and morphology of the films were characterized by Raman spectroscopy and scanning electron microscopy.The diagnosis of plasma excited by a helicon wave was measured by optical emission spectroscopy and a Langmuir probe.The mechanism of high growth rate fabrication for DLC films by HWP-CVD has been discussed.The growth rate of the DLC films reaches a maximum value of 54μm h^-1at the CH4flow rate of 85 sccm,which is attributed to the higher plasma density during the helicon wave plasma discharge.The CH and Hαradicals play an important role in the growth of DLC films.The results show that the Hαradicals are beneficial to the formation and stabilization of C=C bond from sp^2to sp^3.展开更多
In order to deposit good films, we need to study the uniformity of plasma density and the plasma density under different gas pressures and powers. The plasma density was diagnosed by a Langmuir probe. The optical emis...In order to deposit good films, we need to study the uniformity of plasma density and the plasma density under different gas pressures and powers. The plasma density was diagnosed by a Langmuir probe. The optical emission spectroscopy (OES) of CH4 and H2 discharge was obtained with raster spectroscopy, with characteristic peaks of H and CH achieved. Diamond-like carbon films were achieved based on the study of plasma density and OES and characterized by atomic force microscope (AFM), X-ray diffraction instrument (XRD), Raman spectroscope and profiler.展开更多
Nitrogen doped diamond-like carbon (DLC:N) films were prepared by electron cyclotron resonance chemical vapor deposition (ECR-CVD) on polycrystalline Si chips. Film thickness is about 50 nm. Auger electron spectr...Nitrogen doped diamond-like carbon (DLC:N) films were prepared by electron cyclotron resonance chemical vapor deposition (ECR-CVD) on polycrystalline Si chips. Film thickness is about 50 nm. Auger electron spectroscopy (AES) was used to evaluate nitrogen content, and increasing N2 flow improved N content from 0 to 7.6%. Raman and X-ray photoelectron spectroscopy (XPS) analysis results reveal CN-sp^3C and N-sp^2C structure. With increasing the N2 flow, sp^3C decreases from 73.74% down to 42.66%, and so does N-sp^3C from 68.04% down to 20.23%. The hardness decreases from 29.18 GPa down to 19.74 GPa, and the Young's modulus from 193.03 GPa down to 144.52 GPa.展开更多
Diamond-like carbon (DLC) films are deposited by the Hall ion source assisted by the mid-frequency unbalanced magnetron sputtering technique. The effects of the substrate voltage bias, the substrate temperature, the...Diamond-like carbon (DLC) films are deposited by the Hall ion source assisted by the mid-frequency unbalanced magnetron sputtering technique. The effects of the substrate voltage bias, the substrate temperature, the Hall discharging current and the argon/nitrogen ratio on the DLC film's performance were studied. The experimental results show that the film's surface roughness, the hardness and the Young's modulus increase firstly and then decrease with the bias voltage incrementally increases. Also when the substrate temperature rises, the surface roughness of the film varies slightly, but its hardness and Young's modulus firstly increase followed by a sharp decrease when the temperature surpassing 120 ℃. With the Hall discharging current incrementally rising, the hardness and Young's modulus of the film decrease and the surface roughness of the film on 316L stainless steel firstly decreased and then remains constant.展开更多
Dielectric barrier discharge at atmospheric presure has been applied to prepare hydrocarbon films on large- area glass and silicon substrates. When hydrogen and methane mixture(2:1) is used as discharge gas and the s...Dielectric barrier discharge at atmospheric presure has been applied to prepare hydrocarbon films on large- area glass and silicon substrates. When hydrogen and methane mixture(2:1) is used as discharge gas and the substrate is heated to 300 C, hard hydrogenated amorphous carbon film is deposited. From the IR deconvolution analysis of the C-H stretching absorption for the coating, the hydrocarbon group ration (CH3:CH2:CH) and C-C bond type ratio (sp3c/sp2c) are about 10%: 21%: 69% and 3:1~6:1,respectively. Their Knoop hardness is up to 10Gpa. No film isdeposited when the content of methane in the mixed gases is decreased to 5% at 300 C silicon substrate.展开更多
In this paper, diamond-like carbon (DLC) films were deposited on Ti alloy by electro-deposition. DLC films were brown andcomposed of the compact grains whose diameter was about 400 nm. Examined by XPS, the main compos...In this paper, diamond-like carbon (DLC) films were deposited on Ti alloy by electro-deposition. DLC films were brown andcomposed of the compact grains whose diameter was about 400 nm. Examined by XPS, the main composition of the filmswas carbon. In the Raman spectrum, there were a broad peak at 1350 cm^(-1) and a broad peak at 1600 cm^(-1), which indicatedthat the films were DLC films.展开更多
Diamond-like carbon (DLC) films have been deposited using three different techniques: (a) electron cyclotron resonance——plasma source ion implantation, (b) low-pressure dielectric barrier discharge, (c) fil...Diamond-like carbon (DLC) films have been deposited using three different techniques: (a) electron cyclotron resonance——plasma source ion implantation, (b) low-pressure dielectric barrier discharge, (c) filtered——pulsed cathodic arc discharge, The surface and mechanical properties of these films are compared using atomic force microscopebased tests. The experimental results show that hydrogenated DLC films are covered with soft surface layers enriched with hydrogen and sp^3 hybridized carbon while the soft surface layers of tetrahedral amorphous carbon (ta-C) films have graphite-like structure, The formation of soft surface layers can be associated with the surface diffusion and growth induced by the low-energy deposition process. For typical CVD methods, the atomic hydrogen in the plasmas can contribute to the formation of hydrogen and sp^3 hybridized carbon enriched surface layers, The high-energy ion implantation causes the rearrangement of atoms beneath the surface layer and leads to an increase in film density. The ta-C films can be deposited using the medium energy carbon ions in the highly-ionized plasma.展开更多
Nitrogen-doped diamond-like carbon (DLC:N) films prepared by the filtered cathodic vacuum arc technology are functionalized with various chemical molecules including dopamine (DA), 3-Aminobenzeneboronic acid (A...Nitrogen-doped diamond-like carbon (DLC:N) films prepared by the filtered cathodic vacuum arc technology are functionalized with various chemical molecules including dopamine (DA), 3-Aminobenzeneboronic acid (APBA), and adenosine triphosphate (ATP), and the impacts of surface functionalities on the surface morphologies, compositions, microstructures, and cell compatibility of the DLC:N films are systematically investigated. We demonstrate that the surface groups of DLC:N have a significant effect on the surface and structural properties of the film. The activity of PC12 cells depends on the particular type of surface functional groups of DLC:N films regardless of surface roughness and wettability. Our research offers a novel way for designing functionalized carbon films as tailorable substrates for biosensors and biomedical engineering applications.展开更多
Diamond-like carbon (DLC) films have been deposited on glass substrates usingradio-frequency (rf) plasma deposition method. Gamma -ray, ultraviolet (UV) ray were used toirradiate the DLC films. Raman spectroscopy and ...Diamond-like carbon (DLC) films have been deposited on glass substrates usingradio-frequency (rf) plasma deposition method. Gamma -ray, ultraviolet (UV) ray were used toirradiate the DLC films. Raman spectroscopy and infrared (IR) spectroscopy were use to characterizethe changing characteristics of SP^3 C-H bond and hydrogen content in the films due to theirradiations. The results show that, the damage degrees induced by the UV ray on the SP^3 C-H bondsare much stronger than that by the gamma -ray. When the irradiation dose of gamma -ray reaches 1 OX10^4 Gy, the SP^3 C-H bond reduces about 50 percent in number. The square electrical resistance ofthe films is reduced due to the irradiation of UV ray and this is caused by severe oxidation of thefilms. By using the results on optical gap of the films and the fully constrained network theory,the hydrogen content in the as-deposited films is estimated to be l0-25at. percent.展开更多
This paper reported that the nano-catkin carbon films were prepared on Si substrates by means of electron cyclotron resonance microwave plasma chemical vapour deposition in a hydrogen and methane mixture. The surface ...This paper reported that the nano-catkin carbon films were prepared on Si substrates by means of electron cyclotron resonance microwave plasma chemical vapour deposition in a hydrogen and methane mixture. The surface morphology and the structure of the fabricated films were characterized by using scanning electron microscopes and Raman spectroscopy, respectively. The stable field emission properties with a low threshold field of 5V/μm corresponding to a current density of about 1μA/cm^2 and a current density of 3.2mA/cm^2 at an electric field of 10V/μm were obtained from the carbon film deposited at CH4 concentration of 8%. The mechanism that the threshold field decreased with the increase of the CH4 concentration and the high emission current appeared at the high CH4 concentration was explained by using the Fowler-Nordheim theory.展开更多
Nano-sheet carbon films are prepared on Si wafers by means of quartz-tube microwave plasma chemical vapour deposition (MPCVD) in a gas mixture of hydrogen and methane. The structure of the fabricated films is invest...Nano-sheet carbon films are prepared on Si wafers by means of quartz-tube microwave plasma chemical vapour deposition (MPCVD) in a gas mixture of hydrogen and methane. The structure of the fabricated films is investigated by using field emission scanning electron microscope (FESEM) and Raman spectroscopy. These nano^carbon films are possessed of good field emission (FE) characteristics with a low threshold field of 2.6 V/μm and a high current density of 12.6 mA/cm^2 at an electric field of 9 V/μm. As the FE currents tend to be saturated in a high E region, no simple Fowler-Nordheim (F-N) model is applicable. A modified F N model considering statistic effects of FE tip structures and a space-charge-limited-current (SCLC) effect is applied successfully to explaining the FE data observed at low and high electric fields, respectively.展开更多
In order to study the influence of nitrogen incorporated into amorphous carbon films, nitrogenated amorphous carbon films have been deposited by using surface wave plasma chemical vapor deposition under various ratios...In order to study the influence of nitrogen incorporated into amorphous carbon films, nitrogenated amorphous carbon films have been deposited by using surface wave plasma chemical vapor deposition under various ratios of N2/CH4 gas flow. Optical emission spectroscopy has been used to monitor plasma features near the deposition zone. After deposition, the samples are checked by Raman spectroscopy and x-ray photo spectroscopy (XPS). Optical emission intensities of CH and N atom in the plasma are found to be enhanced with the increase in the N2/CH4 gas flow ratio, and then reach their maximums when the N2/CH4 gas flow ratio is 5%. A contrary variation is found in Raman spectra of deposited films. The intensity ratio of the D band to the G band (Id/Ig) and the peak positions of the G and D bands all reach their minimums when the N2/CH4 gas flow ratio is 5%. These show that the structure of amorphous carbon films has been significantly modified by introduction of nitrogen.展开更多
The mirror-confinement-type electron cyclotron resonance(MCECR) plasma source has high plasma density and high electron temperature. It is quite useful in many plasma processing, and has been used for etching and thin...The mirror-confinement-type electron cyclotron resonance(MCECR) plasma source has high plasma density and high electron temperature. It is quite useful in many plasma processing, and has been used for etching and thin-film deposition. The carbon films with 40 nm thickness were deposited by MCECR plasma sputtering method on Si, and the influence of substrate bias on the properties of carbon films was studied. The bonding structure of the film was analyzed by the X-ray photoelectron spectroscopy(XPS), the tribological properties were measured by the pin-on-disk(POD) tribometer, the nanohardness of the films was measured by the nanoindenter, and the deposition speed and the refractive index were measured by the ellipse meter. The better substrate bias was obtained, and the better properties of carbon films were obtained.展开更多
Amorphous hydrogenated carbon thin films have been deposited with benzene plasma in an electron cyclotron resonance (ECR) plasma enhanced chemical vapor deposition system. The characteristic of Benzene discharge plas...Amorphous hydrogenated carbon thin films have been deposited with benzene plasma in an electron cyclotron resonance (ECR) plasma enhanced chemical vapor deposition system. The characteristic of Benzene discharge plasma has been monitored by Mast spectrometry. It shows that the majority of the plasma species in the downstream ECR Plasma with benzene as gas source are acetylene, ethylene and higher mass species. In the experiments, the effects of the substrate temperature on the deposition rates have been emphatically studied. The structures of the films were analyzed by FTIR and Ramam spectrum.The results show that when the substrate temperature rises, the deposition rate drops down, the hydrogen Foment decreases, with the higher SP3 content being presented in the film.展开更多
a-C:F films are deposited by microwave electron cyclotron resonance (ECR)plasma chemical vapor deposition (CVD) using trifluoromethane (CHF3) and benzene (C6H6) as source gases at different microwave powers. The radic...a-C:F films are deposited by microwave electron cyclotron resonance (ECR)plasma chemical vapor deposition (CVD) using trifluoromethane (CHF3) and benzene (C6H6) as source gases at different microwave powers. The radicals in plasma originating from source gases dissociation are analyzed by relative irradiance measurement. The bonding configurations and binding state of a-C:F films are measured with Fourier-transformed infrared spectrometer (FTIR) and x-ray photoelectron spectroscopy (XPS). The results show that a-C:F films are mainly composed of CF radical at lower powers but of CF2 radical at higher powers. The deposition of films is related to the radicals generated in plasma and the main bonding configurations are dependent on the ratio of CF to CF2 radicals in films.展开更多
The low-k carbon doped silica film has been modified by radio frequency helium plasma at 5 Pa pressure and 80 W power with subsequent XPS, FTIR and optical emission spec- troscopy analysis. XPS data indicate that heli...The low-k carbon doped silica film has been modified by radio frequency helium plasma at 5 Pa pressure and 80 W power with subsequent XPS, FTIR and optical emission spec- troscopy analysis. XPS data indicate that helium ions have broken Si-C bonds, leading to Si-C scission with C(1s) lost seriously. The Si(2p), O(ls), peak obviously shifted to higher binding en- ergies, indicating an increasingly oxidized Si(2p). FTIR data also show that the silanol formation increased with longer exposure time up to a week. Contrarily, the CHa stretch, Si-C stretching bond and the ratio of the Si-O-Si cage and Si-O-Si network peak sharply decreased upon exposure to helium plasma. The OES result indicates that monovalent helium ions in plasma play a key role in damaging carbon doped silica film. So it can be concluded that the monovalent helium ions besides VUV photons can break the weak Si-C bonds to create Si dangling bonds and free methyl radicals, and the latter easily reacts with O_2 from the atmosphere to generate CO_2 and H_2O. The bonds change is due to the Si dangling bonds combining with H_2O, thereby, increasing the dielectric constant k value.展开更多
The effective parameters on the diameter of carbon nanotubes (CNTs) by plasma enhanced chemical vapor deposition (PECVD) were presented.Among lots of influential parameters,the effects of the catalytic film thickness ...The effective parameters on the diameter of carbon nanotubes (CNTs) by plasma enhanced chemical vapor deposition (PECVD) were presented.Among lots of influential parameters,the effects of the catalytic film thickness and the pretreatment plasma power on the growth of CNTs were investigated.The results show that the size of catalytic islands increases by increasing the thickness of catalytic layer,but the density of CNTs decreases.The pretreatment duration time of 30 s is the optimal condition for growing CNTs with about 50 nm in diameter.By increasing the pretreatment plasma power,the diameter of CNTs decreases gradually.However,the diameter of CNTs does not change drastically from 80 to 120 W.The uniformly grown CNTs with the diameter of 50 nm are obtained at the pretreatment plasma power of 100 W.展开更多
The diamond-like carbon(DLC)film on 316L stainless steel substrate was preparedpulsed plasma-enhanced chemical vapor deposition,and the performance of the films was optimizedregulating the pulse voltage.Microstructure...The diamond-like carbon(DLC)film on 316L stainless steel substrate was preparedpulsed plasma-enhanced chemical vapor deposition,and the performance of the films was optimizedregulating the pulse voltage.Microstructure and properties of DLC film on 316L stainless steel were characterizedatomic force microscopy,field-emission scanning electron microscopy,Raman spectra,nano-indenter and electrochemical workstations.The results showed that DLC films with smooth and dense morphology have a low friction coefficient and high nano-indentation hardness,and the surface hardness of 316L stainless steel substrate was enhancedmore than 3 times.The mechanical properties of DLC films and their bond with 316L stainless steel could be further optimizedincreasing pulse voltage.DLC films on 316L stainless steel substrate increased the self-corrosion potential0.173 V and decreased self-corrosion current99%,which significantly improved the anti-corrosive properties of 316L substrate.展开更多
基金supported by Shenzhen Key Laboratory of Sensors Technology Open Fund of China (Nos.SST200908, SST200911)
文摘Electron cyclotron resonance (ECR) plasma was applied to enhance the direct current magnetron sputtering to prepare hydrogenated diamond-like carbon (H-DLC) films. For different microwave powers, both argon and hydrogen gas are introduced separately as the ECR working gas to investigate the influence of microwave power on the microstructure and electrical property of the H-DLC films deposited on P-type silicon substrates. A series of characterization methods including the Raman spectrum and atomic force microscopy are used. Results show that, within a certain range, the increase in microwave power affects the properties of the thin films, namely the sp3 ratio, the hardness, the nanoparticle size and the resistivity all increase while the roughness decreases with the increase in microwave power. The maximum of resistivity amounts to 1.1×10^9 Ω.cm. At the same time it is found that the influence of microwave power on the properties of H-DLC films is more pronounced when argon gas is applied as the ECR working gas, compared to hydrogen gas.
文摘Diamond-like carbon (DLC) films were synthesized by plasma immersion ion implantation and deposition (PIIID) on 9Cr18 bearing steel surface. Influences of working gas pressure and pulse width of the bias voltage on properties of the thin film were investigated. The chemical compositions of the as-deposited films were characterized by Raman spectroscopy. The micro-hardness, friction and wear behavior, corrosion resistance of the samples were evaluated, respectively. Compared with uncoated substrates, micro-hardness results reveal that the maximum is increased by 88.7%. In addition, the friction coefficient decreases to about 0.1, and the corrosion resistance of treated coupons surface are improved significantly.
基金supported by National Natural Science Foundation of China(Nos.11175126,11375126,11435009,11505123)the National Magnetic Confinement Fusion Program of China(Nos.2014GB106005,2010GB106000)+1 种基金a project funded by China Postdoctoral Science Foundationa project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘A high growth rate fabrication of diamond-like carbon(DLC)films at room temperature was achieved by helicon wave plasma chemical vapor deposition(HWP-CVD)using Ar/CH4gas mixtures.The microstructure and morphology of the films were characterized by Raman spectroscopy and scanning electron microscopy.The diagnosis of plasma excited by a helicon wave was measured by optical emission spectroscopy and a Langmuir probe.The mechanism of high growth rate fabrication for DLC films by HWP-CVD has been discussed.The growth rate of the DLC films reaches a maximum value of 54μm h^-1at the CH4flow rate of 85 sccm,which is attributed to the higher plasma density during the helicon wave plasma discharge.The CH and Hαradicals play an important role in the growth of DLC films.The results show that the Hαradicals are beneficial to the formation and stabilization of C=C bond from sp^2to sp^3.
基金supported in part by the National Natural Science Foundation of China (10575039) the Chinese Specialized Research Fund for the Doctoral Programme of Higher Education (2004057408)+1 种基金the Key Project of Science Research Fund of Guangdong (China) (05100534)the Science Project Foundation of Guangzhou City (China) (2005Z3-D2031).
文摘In order to deposit good films, we need to study the uniformity of plasma density and the plasma density under different gas pressures and powers. The plasma density was diagnosed by a Langmuir probe. The optical emission spectroscopy (OES) of CH4 and H2 discharge was obtained with raster spectroscopy, with characteristic peaks of H and CH achieved. Diamond-like carbon films were achieved based on the study of plasma density and OES and characterized by atomic force microscope (AFM), X-ray diffraction instrument (XRD), Raman spectroscope and profiler.
文摘Nitrogen doped diamond-like carbon (DLC:N) films were prepared by electron cyclotron resonance chemical vapor deposition (ECR-CVD) on polycrystalline Si chips. Film thickness is about 50 nm. Auger electron spectroscopy (AES) was used to evaluate nitrogen content, and increasing N2 flow improved N content from 0 to 7.6%. Raman and X-ray photoelectron spectroscopy (XPS) analysis results reveal CN-sp^3C and N-sp^2C structure. With increasing the N2 flow, sp^3C decreases from 73.74% down to 42.66%, and so does N-sp^3C from 68.04% down to 20.23%. The hardness decreases from 29.18 GPa down to 19.74 GPa, and the Young's modulus from 193.03 GPa down to 144.52 GPa.
文摘Diamond-like carbon (DLC) films are deposited by the Hall ion source assisted by the mid-frequency unbalanced magnetron sputtering technique. The effects of the substrate voltage bias, the substrate temperature, the Hall discharging current and the argon/nitrogen ratio on the DLC film's performance were studied. The experimental results show that the film's surface roughness, the hardness and the Young's modulus increase firstly and then decrease with the bias voltage incrementally increases. Also when the substrate temperature rises, the surface roughness of the film varies slightly, but its hardness and Young's modulus firstly increase followed by a sharp decrease when the temperature surpassing 120 ℃. With the Hall discharging current incrementally rising, the hardness and Young's modulus of the film decrease and the surface roughness of the film on 316L stainless steel firstly decreased and then remains constant.
文摘Dielectric barrier discharge at atmospheric presure has been applied to prepare hydrocarbon films on large- area glass and silicon substrates. When hydrogen and methane mixture(2:1) is used as discharge gas and the substrate is heated to 300 C, hard hydrogenated amorphous carbon film is deposited. From the IR deconvolution analysis of the C-H stretching absorption for the coating, the hydrocarbon group ration (CH3:CH2:CH) and C-C bond type ratio (sp3c/sp2c) are about 10%: 21%: 69% and 3:1~6:1,respectively. Their Knoop hardness is up to 10Gpa. No film isdeposited when the content of methane in the mixed gases is decreased to 5% at 300 C silicon substrate.
基金Our work is supported by the Natural Science Fund of Jiangsu Province(BK20001414).
文摘In this paper, diamond-like carbon (DLC) films were deposited on Ti alloy by electro-deposition. DLC films were brown andcomposed of the compact grains whose diameter was about 400 nm. Examined by XPS, the main composition of the filmswas carbon. In the Raman spectrum, there were a broad peak at 1350 cm^(-1) and a broad peak at 1600 cm^(-1), which indicatedthat the films were DLC films.
基金Project supported by National Natural Science Foundation of China (Grant No 10405005).
文摘Diamond-like carbon (DLC) films have been deposited using three different techniques: (a) electron cyclotron resonance——plasma source ion implantation, (b) low-pressure dielectric barrier discharge, (c) filtered——pulsed cathodic arc discharge, The surface and mechanical properties of these films are compared using atomic force microscopebased tests. The experimental results show that hydrogenated DLC films are covered with soft surface layers enriched with hydrogen and sp^3 hybridized carbon while the soft surface layers of tetrahedral amorphous carbon (ta-C) films have graphite-like structure, The formation of soft surface layers can be associated with the surface diffusion and growth induced by the low-energy deposition process. For typical CVD methods, the atomic hydrogen in the plasmas can contribute to the formation of hydrogen and sp^3 hybridized carbon enriched surface layers, The high-energy ion implantation causes the rearrangement of atoms beneath the surface layer and leads to an increase in film density. The ta-C films can be deposited using the medium energy carbon ions in the highly-ionized plasma.
基金supported by the National Natural Science Foundation of China(Grant Nos.51272237,51272231,and 51010002)the China Postdoctoral Science Foundation(Grant Nos.2012M520063,2013T60587,and Bsh1201016)
文摘Nitrogen-doped diamond-like carbon (DLC:N) films prepared by the filtered cathodic vacuum arc technology are functionalized with various chemical molecules including dopamine (DA), 3-Aminobenzeneboronic acid (APBA), and adenosine triphosphate (ATP), and the impacts of surface functionalities on the surface morphologies, compositions, microstructures, and cell compatibility of the DLC:N films are systematically investigated. We demonstrate that the surface groups of DLC:N have a significant effect on the surface and structural properties of the film. The activity of PC12 cells depends on the particular type of surface functional groups of DLC:N films regardless of surface roughness and wettability. Our research offers a novel way for designing functionalized carbon films as tailorable substrates for biosensors and biomedical engineering applications.
基金This research was supported by the Aeronautics Science Foundation of China (No.98G51124).
文摘Diamond-like carbon (DLC) films have been deposited on glass substrates usingradio-frequency (rf) plasma deposition method. Gamma -ray, ultraviolet (UV) ray were used toirradiate the DLC films. Raman spectroscopy and infrared (IR) spectroscopy were use to characterizethe changing characteristics of SP^3 C-H bond and hydrogen content in the films due to theirradiations. The results show that, the damage degrees induced by the UV ray on the SP^3 C-H bondsare much stronger than that by the gamma -ray. When the irradiation dose of gamma -ray reaches 1 OX10^4 Gy, the SP^3 C-H bond reduces about 50 percent in number. The square electrical resistance ofthe films is reduced due to the irradiation of UV ray and this is caused by severe oxidation of thefilms. By using the results on optical gap of the films and the fully constrained network theory,the hydrogen content in the as-deposited films is estimated to be l0-25at. percent.
文摘This paper reported that the nano-catkin carbon films were prepared on Si substrates by means of electron cyclotron resonance microwave plasma chemical vapour deposition in a hydrogen and methane mixture. The surface morphology and the structure of the fabricated films were characterized by using scanning electron microscopes and Raman spectroscopy, respectively. The stable field emission properties with a low threshold field of 5V/μm corresponding to a current density of about 1μA/cm^2 and a current density of 3.2mA/cm^2 at an electric field of 10V/μm were obtained from the carbon film deposited at CH4 concentration of 8%. The mechanism that the threshold field decreased with the increase of the CH4 concentration and the high emission current appeared at the high CH4 concentration was explained by using the Fowler-Nordheim theory.
文摘Nano-sheet carbon films are prepared on Si wafers by means of quartz-tube microwave plasma chemical vapour deposition (MPCVD) in a gas mixture of hydrogen and methane. The structure of the fabricated films is investigated by using field emission scanning electron microscope (FESEM) and Raman spectroscopy. These nano^carbon films are possessed of good field emission (FE) characteristics with a low threshold field of 2.6 V/μm and a high current density of 12.6 mA/cm^2 at an electric field of 9 V/μm. As the FE currents tend to be saturated in a high E region, no simple Fowler-Nordheim (F-N) model is applicable. A modified F N model considering statistic effects of FE tip structures and a space-charge-limited-current (SCLC) effect is applied successfully to explaining the FE data observed at low and high electric fields, respectively.
基金Natural Science Foundation of Anhui Province(No.03044702)National Natural Science Foundation of China(No.19835030)
文摘In order to study the influence of nitrogen incorporated into amorphous carbon films, nitrogenated amorphous carbon films have been deposited by using surface wave plasma chemical vapor deposition under various ratios of N2/CH4 gas flow. Optical emission spectroscopy has been used to monitor plasma features near the deposition zone. After deposition, the samples are checked by Raman spectroscopy and x-ray photo spectroscopy (XPS). Optical emission intensities of CH and N atom in the plasma are found to be enhanced with the increase in the N2/CH4 gas flow ratio, and then reach their maximums when the N2/CH4 gas flow ratio is 5%. A contrary variation is found in Raman spectra of deposited films. The intensity ratio of the D band to the G band (Id/Ig) and the peak positions of the G and D bands all reach their minimums when the N2/CH4 gas flow ratio is 5%. These show that the structure of amorphous carbon films has been significantly modified by introduction of nitrogen.
文摘The mirror-confinement-type electron cyclotron resonance(MCECR) plasma source has high plasma density and high electron temperature. It is quite useful in many plasma processing, and has been used for etching and thin-film deposition. The carbon films with 40 nm thickness were deposited by MCECR plasma sputtering method on Si, and the influence of substrate bias on the properties of carbon films was studied. The bonding structure of the film was analyzed by the X-ray photoelectron spectroscopy(XPS), the tribological properties were measured by the pin-on-disk(POD) tribometer, the nanohardness of the films was measured by the nanoindenter, and the deposition speed and the refractive index were measured by the ellipse meter. The better substrate bias was obtained, and the better properties of carbon films were obtained.
基金Nature Science Foundation of Jiangsu Province, P.R.China
文摘Amorphous hydrogenated carbon thin films have been deposited with benzene plasma in an electron cyclotron resonance (ECR) plasma enhanced chemical vapor deposition system. The characteristic of Benzene discharge plasma has been monitored by Mast spectrometry. It shows that the majority of the plasma species in the downstream ECR Plasma with benzene as gas source are acetylene, ethylene and higher mass species. In the experiments, the effects of the substrate temperature on the deposition rates have been emphatically studied. The structures of the films were analyzed by FTIR and Ramam spectrum.The results show that when the substrate temperature rises, the deposition rate drops down, the hydrogen Foment decreases, with the higher SP3 content being presented in the film.
文摘a-C:F films are deposited by microwave electron cyclotron resonance (ECR)plasma chemical vapor deposition (CVD) using trifluoromethane (CHF3) and benzene (C6H6) as source gases at different microwave powers. The radicals in plasma originating from source gases dissociation are analyzed by relative irradiance measurement. The bonding configurations and binding state of a-C:F films are measured with Fourier-transformed infrared spectrometer (FTIR) and x-ray photoelectron spectroscopy (XPS). The results show that a-C:F films are mainly composed of CF radical at lower powers but of CF2 radical at higher powers. The deposition of films is related to the radicals generated in plasma and the main bonding configurations are dependent on the ratio of CF to CF2 radicals in films.
基金supported by Shenyang Science and Technology Plan of China(No.F12028200)
文摘The low-k carbon doped silica film has been modified by radio frequency helium plasma at 5 Pa pressure and 80 W power with subsequent XPS, FTIR and optical emission spec- troscopy analysis. XPS data indicate that helium ions have broken Si-C bonds, leading to Si-C scission with C(1s) lost seriously. The Si(2p), O(ls), peak obviously shifted to higher binding en- ergies, indicating an increasingly oxidized Si(2p). FTIR data also show that the silanol formation increased with longer exposure time up to a week. Contrarily, the CHa stretch, Si-C stretching bond and the ratio of the Si-O-Si cage and Si-O-Si network peak sharply decreased upon exposure to helium plasma. The OES result indicates that monovalent helium ions in plasma play a key role in damaging carbon doped silica film. So it can be concluded that the monovalent helium ions besides VUV photons can break the weak Si-C bonds to create Si dangling bonds and free methyl radicals, and the latter easily reacts with O_2 from the atmosphere to generate CO_2 and H_2O. The bonds change is due to the Si dangling bonds combining with H_2O, thereby, increasing the dielectric constant k value.
基金Project supported by a 2-Year Research Grant of Pusan National UniversityProject(2011-0006257)supported by National Core Research Center(NCRC)Program through the National Research Foundation of Korea funded by the Ministry of Education,Science and Technology
文摘The effective parameters on the diameter of carbon nanotubes (CNTs) by plasma enhanced chemical vapor deposition (PECVD) were presented.Among lots of influential parameters,the effects of the catalytic film thickness and the pretreatment plasma power on the growth of CNTs were investigated.The results show that the size of catalytic islands increases by increasing the thickness of catalytic layer,but the density of CNTs decreases.The pretreatment duration time of 30 s is the optimal condition for growing CNTs with about 50 nm in diameter.By increasing the pretreatment plasma power,the diameter of CNTs decreases gradually.However,the diameter of CNTs does not change drastically from 80 to 120 W.The uniformly grown CNTs with the diameter of 50 nm are obtained at the pretreatment plasma power of 100 W.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51502126 and 51672119)the Natural Science Foundation of Liaoning Province(No.20180550802).
文摘The diamond-like carbon(DLC)film on 316L stainless steel substrate was preparedpulsed plasma-enhanced chemical vapor deposition,and the performance of the films was optimizedregulating the pulse voltage.Microstructure and properties of DLC film on 316L stainless steel were characterizedatomic force microscopy,field-emission scanning electron microscopy,Raman spectra,nano-indenter and electrochemical workstations.The results showed that DLC films with smooth and dense morphology have a low friction coefficient and high nano-indentation hardness,and the surface hardness of 316L stainless steel substrate was enhancedmore than 3 times.The mechanical properties of DLC films and their bond with 316L stainless steel could be further optimizedincreasing pulse voltage.DLC films on 316L stainless steel substrate increased the self-corrosion potential0.173 V and decreased self-corrosion current99%,which significantly improved the anti-corrosive properties of 316L substrate.