An efficient and simple protocol of copper-catalyzed C-S bond formation between aryl halides and inexpensive and commercially available aminothiourea is reported.A variety of symmetrical diaryl sulfides can be synthes...An efficient and simple protocol of copper-catalyzed C-S bond formation between aryl halides and inexpensive and commercially available aminothiourea is reported.A variety of symmetrical diaryl sulfides can be synthesized in good to excellent yields up to 94%with the advantage of avoiding foul-smelling thiols.展开更多
The non-toxic and magnetically separable nano-CuFeOcatalyzed synthesis of symmetrical aryl sulfides by the reaction of thiourea with a wide variety of aryl halides,including aryl chlorides has been reported.Excellent ...The non-toxic and magnetically separable nano-CuFeOcatalyzed synthesis of symmetrical aryl sulfides by the reaction of thiourea with a wide variety of aryl halides,including aryl chlorides has been reported.Excellent yields of products have been obtained under ligand-free conditions and without the use of any expensive catalyst,such as palladium.展开更多
基金supported by the Natural Science Foundation of Zhejiang Province(No.Y407240)
文摘An efficient and simple protocol of copper-catalyzed C-S bond formation between aryl halides and inexpensive and commercially available aminothiourea is reported.A variety of symmetrical diaryl sulfides can be synthesized in good to excellent yields up to 94%with the advantage of avoiding foul-smelling thiols.
基金the funding support received for this project from the Isfahan University of Technology(1UT),IR Iran (A.R.H.) and Grant GM 33138(A.E.R.)the National Institutes of Health,USA.Further financial support from the Center of Excellency in Chemistry Research(IUT)
文摘The non-toxic and magnetically separable nano-CuFeOcatalyzed synthesis of symmetrical aryl sulfides by the reaction of thiourea with a wide variety of aryl halides,including aryl chlorides has been reported.Excellent yields of products have been obtained under ligand-free conditions and without the use of any expensive catalyst,such as palladium.