Long-term data on diatom assemblages in a sediment core (60 cm) obtained from the Changjiang (Yangtze) River estuary were analyzed in order to assess the environmental changes that took place in the approximately ...Long-term data on diatom assemblages in a sediment core (60 cm) obtained from the Changjiang (Yangtze) River estuary were analyzed in order to assess the environmental changes that took place in the approximately 38 years (as determined by 210pb measurements), i.e., between 1974 and 2012, of sediment accumulation. From the sediment core, 62 diatom taxa and genera were identified. The diatom biomass in the core generally increased beginning in the mid-1990s (core depth: 35 cm), accompanied by a shift in the dominant species from Podosira stelliger and two species of Cyclotella (C. stylorum and C. striata) to Paralia sulcata, three species of Thalassiosira ( T. eccentria, I". oestrupii, and T. excentrica), Actinoptychus undulates, and Thalassionema nitzschioides. The changes in both species diversity and abundance suggested that since the 1980s the estuary has undergone extensive eutrophication. This conclusion was supported by the increased proportion of planktonic species, another indicator of high nutrients inputs, in the Changjiang River estuary.展开更多
Diatoms are a globally successful and eukaryotic photosynthetic organism with an ornamented silica external wall.The relationship between their valve morphology and habitat means that diatoms can be used as bioindicat...Diatoms are a globally successful and eukaryotic photosynthetic organism with an ornamented silica external wall.The relationship between their valve morphology and habitat means that diatoms can be used as bioindicators to characterize the aquatic environment.To estimate the differential distribution and diversity of diatom assemblages along the coastal line,we collected phytoplankton samples from 114 coastal sites of waters of R.O.Korea.We applied the unweighted pair-group technique using the arithmetic averages clustering method to cluster the sampling sites,apart from those where the biota consisted of other groups,such as dinoflagellates,into four regions:the Yellow Sea,South Sea,southern East Sea,and northern East Sea.Indicator species analysis in each region led to the selection of tychoplanktonic,chain-forming,attached species to substrates and psychrophilic indicator diatoms,respectively,each of which represented a planktonic lifestyle associated with one of the four regions.This study shows the diatom assemblages to serve as bioindicators of Korean coastal water in winter,and the subsequent seasonal survey will provide a starting point for the improved understanding of Korean diatom-based ecoregions,in both time and space.展开更多
We studied diatom distribution from 62 samples from the uppermost 1 cm of sedimem in the South China Sea (SCS), using grabs or box corers in three cruises between 2001-2007. Fifty six genera, 256 species and their v...We studied diatom distribution from 62 samples from the uppermost 1 cm of sedimem in the South China Sea (SCS), using grabs or box corers in three cruises between 2001-2007. Fifty six genera, 256 species and their varieties were identified. Dominating species included Coscinodiscus africanus, Coscinodiscus nodulifer, Cyclotella stylorum, Hemidiscus cuneiformis, Melosira sulcata, Nitzschia marina, Roperia tesselata, Thalassionema nitzschioides, Thalassiosira excentrica, and Thalassiothrix longissima. Most surface sediments in the SCS were rich ill diatoms, except for a few coarse samples. Average diatom abundance in the study area was 104 607 valve/g. In terms of the abundance, ecology, and spatial distribution, seven diatom zones (Zones 1-7) were recognized. Zone 1 (northern continental shelf) is affected by warm currents, SCS northern branch of the Kuroshio, and northern coastal currents; Zone 2 (northwestern continental shelf) is affected by intense coastal currents; Zone 3 (Xisha Islands sea area) is a bathyal environment with transitional water masses; Zone 4 (sea basin) is a bathyal-to-deep sea with stable and uniform central water masses in a semi-enclosed marginal sea; Zone 5 (Nansba Islands marine area) is a pelagic environment with relatively high surface temperature; Zone 6 (northern Sunda Shelf) is a tropical shelf environment; and Zone 7 (northern Kalimantan Island shelf area) is affected by warm waters from the Indian Ocean and coastal waters. The data indicate that these diatom zones are closely related to topography, hydrodynamics, temperature, nutrients and especially the salinity. Better understanding of the relationship between diatom distribution and the oceanographic factors would help in the reconstruction of the SCS in the past.展开更多
Diatoms are widely used to study past and present changes in the marine environment. Unimodal models are appropriate for exploring the relationship between environmental properties in Chinese inshore waters and fossil...Diatoms are widely used to study past and present changes in the marine environment. Unimodal models are appropriate for exploring the relationship between environmental properties in Chinese inshore waters and fossil diatom species derived from modem surface sediments. The best-fit relationships between two multivariate datasets (diatom species and environmental variables) were identified using canonical correspondence analysis (CCA), which is a constrained ordination technique. The absolute abundance of diatoms in the Chinese inshore waters ranged from 500 to 48 000 valves/g, and the average absolute abundance of all the 29 sites was l l 300 valves/g. 153 species and varieties of diatoms belonging to 42 genera in all were identified in the Chinese inshore waters. There were 28 dominant diatom species in all. According to the absolute abundance of the dominant species and the spatial distribution of the currents from the Chinese inshore waters, 12 diatom assemblages were distinguished from north to south, which reflected the different oceanographic conditions at the regional scale. Of the eight environmental variables considered, the most important environmental variable is winter sea surface salinity (WSS), which was also the only environmental variable with statistical significance. Therefore, it may be used to establish a transfer functions for the Chinese inshore waters in future paleoclimate studies.展开更多
The Longgan Lake is a shallow mesotrophic macrophyte-dominated lake. According to the high-resolution diatom research from its sediment core, the diatom community succession was built, and the total phosphorus (TP) an...The Longgan Lake is a shallow mesotrophic macrophyte-dominated lake. According to the high-resolution diatom research from its sediment core, the diatom community succession was built, and the total phosphorus (TP) and chlorophyll-a (Chl-a) concentration were quantitatively reconstructed for the past 2000 years, based on the diatom-TP and diatom-Chla transfer functions. The shifts of diatom assemblages also mirrored the developments of aquatic plant, reflecting the characters of aquatic ecosystem evolution. The inferred epilimnetic TP concentration fluctuated within a small range of 36 to 62μg/L, indicating the lake remained a relative stable mesotrophic status in the long historical period. The periodical variations of the diatom assemblage and trophic status suggest a mitigating function of shallow macrophyte-dominated lakes to nutrient input. The changes of lakes’ trophic status don’t linearly respond to the human disturbance in the catchment. The dynamics mechanism of phosphorus in macrophyte-dominated lakes, as inferred from diatoms, will provide a scientific foundation for the prediction of trophic status change in a shallow lake, as well as the lake ecological restoration and management decisions.展开更多
基金Supported by the National Basic Research Program of China(973 Program)(No.2010CB428706)the Funds for Creative Research Groups of China(No.41121064)
文摘Long-term data on diatom assemblages in a sediment core (60 cm) obtained from the Changjiang (Yangtze) River estuary were analyzed in order to assess the environmental changes that took place in the approximately 38 years (as determined by 210pb measurements), i.e., between 1974 and 2012, of sediment accumulation. From the sediment core, 62 diatom taxa and genera were identified. The diatom biomass in the core generally increased beginning in the mid-1990s (core depth: 35 cm), accompanied by a shift in the dominant species from Podosira stelliger and two species of Cyclotella (C. stylorum and C. striata) to Paralia sulcata, three species of Thalassiosira ( T. eccentria, I". oestrupii, and T. excentrica), Actinoptychus undulates, and Thalassionema nitzschioides. The changes in both species diversity and abundance suggested that since the 1980s the estuary has undergone extensive eutrophication. This conclusion was supported by the increased proportion of planktonic species, another indicator of high nutrients inputs, in the Changjiang River estuary.
基金The Fund of the Research Project of Korea Institute of Ocean Science&Technology under contract No.PEA0014the National Research Foundation of the Ministry of Science and ICT under contract Nos NRF-2020R1A2C2005970 and NRF-2017M3A9E4072753the Fund of the Korea Institute of Marine Science&Technology Promotion of the Ministry of Ocean and Fisheries under contract No.21210466。
文摘Diatoms are a globally successful and eukaryotic photosynthetic organism with an ornamented silica external wall.The relationship between their valve morphology and habitat means that diatoms can be used as bioindicators to characterize the aquatic environment.To estimate the differential distribution and diversity of diatom assemblages along the coastal line,we collected phytoplankton samples from 114 coastal sites of waters of R.O.Korea.We applied the unweighted pair-group technique using the arithmetic averages clustering method to cluster the sampling sites,apart from those where the biota consisted of other groups,such as dinoflagellates,into four regions:the Yellow Sea,South Sea,southern East Sea,and northern East Sea.Indicator species analysis in each region led to the selection of tychoplanktonic,chain-forming,attached species to substrates and psychrophilic indicator diatoms,respectively,each of which represented a planktonic lifestyle associated with one of the four regions.This study shows the diatom assemblages to serve as bioindicators of Korean coastal water in winter,and the subsequent seasonal survey will provide a starting point for the improved understanding of Korean diatom-based ecoregions,in both time and space.
基金Supported by the National Natural Science Foundation of China(Nos.40676026,41076079,40831160519)the Basic Research Program of China(973Program)(No.2010CB428704)
文摘We studied diatom distribution from 62 samples from the uppermost 1 cm of sedimem in the South China Sea (SCS), using grabs or box corers in three cruises between 2001-2007. Fifty six genera, 256 species and their varieties were identified. Dominating species included Coscinodiscus africanus, Coscinodiscus nodulifer, Cyclotella stylorum, Hemidiscus cuneiformis, Melosira sulcata, Nitzschia marina, Roperia tesselata, Thalassionema nitzschioides, Thalassiosira excentrica, and Thalassiothrix longissima. Most surface sediments in the SCS were rich ill diatoms, except for a few coarse samples. Average diatom abundance in the study area was 104 607 valve/g. In terms of the abundance, ecology, and spatial distribution, seven diatom zones (Zones 1-7) were recognized. Zone 1 (northern continental shelf) is affected by warm currents, SCS northern branch of the Kuroshio, and northern coastal currents; Zone 2 (northwestern continental shelf) is affected by intense coastal currents; Zone 3 (Xisha Islands sea area) is a bathyal environment with transitional water masses; Zone 4 (sea basin) is a bathyal-to-deep sea with stable and uniform central water masses in a semi-enclosed marginal sea; Zone 5 (Nansba Islands marine area) is a pelagic environment with relatively high surface temperature; Zone 6 (northern Sunda Shelf) is a tropical shelf environment; and Zone 7 (northern Kalimantan Island shelf area) is affected by warm waters from the Indian Ocean and coastal waters. The data indicate that these diatom zones are closely related to topography, hydrodynamics, temperature, nutrients and especially the salinity. Better understanding of the relationship between diatom distribution and the oceanographic factors would help in the reconstruction of the SCS in the past.
基金Supported by the National Natural Science Foundation of China(No.41306083)the Special Fund for Basic Work of Science and Technology from the Ministry of Science and Technology of China(No.2009FY210400)the Special Fund of the Third Institute of Oceanography,State Oceanic Administration for Basic Scientific Research Operations(No.HSK 2011028)
文摘Diatoms are widely used to study past and present changes in the marine environment. Unimodal models are appropriate for exploring the relationship between environmental properties in Chinese inshore waters and fossil diatom species derived from modem surface sediments. The best-fit relationships between two multivariate datasets (diatom species and environmental variables) were identified using canonical correspondence analysis (CCA), which is a constrained ordination technique. The absolute abundance of diatoms in the Chinese inshore waters ranged from 500 to 48 000 valves/g, and the average absolute abundance of all the 29 sites was l l 300 valves/g. 153 species and varieties of diatoms belonging to 42 genera in all were identified in the Chinese inshore waters. There were 28 dominant diatom species in all. According to the absolute abundance of the dominant species and the spatial distribution of the currents from the Chinese inshore waters, 12 diatom assemblages were distinguished from north to south, which reflected the different oceanographic conditions at the regional scale. Of the eight environmental variables considered, the most important environmental variable is winter sea surface salinity (WSS), which was also the only environmental variable with statistical significance. Therefore, it may be used to establish a transfer functions for the Chinese inshore waters in future paleoclimate studies.
基金the Scientific Innovation Projects of Chinese Academy of Sciences(KZCX1-SW-12)andthe 973 projects(2002CB412300)
文摘The Longgan Lake is a shallow mesotrophic macrophyte-dominated lake. According to the high-resolution diatom research from its sediment core, the diatom community succession was built, and the total phosphorus (TP) and chlorophyll-a (Chl-a) concentration were quantitatively reconstructed for the past 2000 years, based on the diatom-TP and diatom-Chla transfer functions. The shifts of diatom assemblages also mirrored the developments of aquatic plant, reflecting the characters of aquatic ecosystem evolution. The inferred epilimnetic TP concentration fluctuated within a small range of 36 to 62μg/L, indicating the lake remained a relative stable mesotrophic status in the long historical period. The periodical variations of the diatom assemblage and trophic status suggest a mitigating function of shallow macrophyte-dominated lakes to nutrient input. The changes of lakes’ trophic status don’t linearly respond to the human disturbance in the catchment. The dynamics mechanism of phosphorus in macrophyte-dominated lakes, as inferred from diatoms, will provide a scientific foundation for the prediction of trophic status change in a shallow lake, as well as the lake ecological restoration and management decisions.