Novel WO3/g-C3N4/Ni(OH)x hybrids have been successfully synthesized by a two-step strategy of high temperature calcination and in situ photodeposition.Their photocatalytic performance was investigated using TEOA as ...Novel WO3/g-C3N4/Ni(OH)x hybrids have been successfully synthesized by a two-step strategy of high temperature calcination and in situ photodeposition.Their photocatalytic performance was investigated using TEOA as a hole scavenger under visible light irradiation.The loading of WO3 and Ni(OH)x cocatalysts boosted the photocatalytic H2 evolution efficiency of g-C3N4.WO3/g-C3N4/Ni(OH)x with 20 wt%defective WO3 and 4.8 wt%Ni(OH)x showed the highest hydrogen production rate of 576 μmol/(g·h),which was 5.7,10.8 and 230 times higher than those of g-C3N4/4.8 wt%Ni(OH)x,20 wt%WO3/C3N4 and g-C3N4 photocatalysts,respectively.The remarkably enhanced H2 evolution performance was ascribed to the combination effects of the Z-scheme heterojunction(WO3/g-C3N4) and loaded cocatalysts(Ni(OH)x),which effectively inhibited the recombination of the photoexcited electron-hole pairs of g-C3N4 and improved both H2 evolution and TEOA oxidation kinetics.The electron spin resonance spectra of ·O2^- and ·OH radicals provided evidence for the Z-scheme charge separation mechanism.The loading of easily available Ni(OH)x cocatalysts on the Z-scheme WO3/g-C3N4 nanocomposites provided insights into constructing a robust multiple-heterojunction material for photocatalytic applications.展开更多
To further improve the charge separation and photocatalytic activities of g-C3N4 and CdMoO4 under visible light irradiation,CdMoO4/g-C3N4 composites were rationally synthesized by a facile precipitation-calcination pr...To further improve the charge separation and photocatalytic activities of g-C3N4 and CdMoO4 under visible light irradiation,CdMoO4/g-C3N4 composites were rationally synthesized by a facile precipitation-calcination procedure.The crystal phases,morphologies,chemical compositions,textural structures,and optical properties of the as-prepared composites were characterized by the corresponding analytical techniques.The photocatalytic activities toward degradation of rhodamine B solution were evaluated under visible light irradiation.The results revealed that integrating CdMoO4 with g-C3N4 could remarkably improve the charge separation and photocatalytic activity,compared with those of pristine g-C3N4 and CdMoO4.This would be because the CdMoO4/g-C3N4 composites could facilitate the transfer and separation of the photoexcited electron-hole pairs,which was confirmed by electrochemical impedance spectroscopy,transient photocurrent responses,and photoluminescence measurements.Moreover,active species trapping experiments demonstrated that holes(h+)and superoxide radicals(?O2?)were the main active species during the photocatalytic reaction.A possible photocatalytic mechanism was proposed on the basis of the energy band structures determined by Mott-Schottky tests.This work would provide further insights into the rational fabrication of composites for organic contaminant removal.展开更多
In recent years,environmental pollution and energy crisis have become increasingly serious issues owing to the burning of fossil fuels.Among the many technologies,decomposition of water to produce hydrogen has attract...In recent years,environmental pollution and energy crisis have become increasingly serious issues owing to the burning of fossil fuels.Among the many technologies,decomposition of water to produce hydrogen has attracted much attention because of its sustainability and non-polluting characteristic.However,highly efficient decomposition of water that is driven by visible light is still a challenge.Herein,we report the large-scale preparation of step-scheme porous graphite carbon nitride/Zn0.2Cd0.8S-diethylenetriamine(Pg-C3N4/Zn0.2Cd0.8S-DETA)composite by a facile solvothermal method.It was found by UV-vis spectroscopy that 15%Pg-C3N4/Zn0.2Cd0.8S-DETA exhibited suitable visible absorption edge and band gap for water decomposition.The hydrogen production rate of 15%Pg-C3N4/Zn0.2Cd0.8S-DETA composite was 6.69 mmol g^-1 h^-1,which was 16.73,1.61,and 1.44 times greater than those of Pg-C3N4,CdS-DETA,and Zn0.2Cd0.8S-DETA,respectively.In addition,15%Pg-C3N4/Zn0.2Cd0.8S-DETA composite displayed excellent photocatalytic stability,which was maintained for seven cycles of photocatalytic water splitting test.We believe that 15%Pg-C3N4/Zn0.2Cd0.8S-DETA composite can be a valuable guide for the development of solar hydrogen production applications in the near future.展开更多
The ternary plasmonic Ag Cl/Ag/g-C_3N_4 photocatalysts were successfully fabricated by a modified deposition–precipitation method, through which Ag/Ag Cl nanoparticles(5–15 nm in size) were evenly dispersed on the s...The ternary plasmonic Ag Cl/Ag/g-C_3N_4 photocatalysts were successfully fabricated by a modified deposition–precipitation method, through which Ag/Ag Cl nanoparticles(5–15 nm in size) were evenly dispersed on the surface of g-C_3N_4. The Ag Cl/Ag/g-C_3N_4 composites exhibited higher photocatalytic activity than Ag/Ag Cl and g-C_3N_4. The enhanced photocatalytic performance could be attributed to an efficient separation of electron–hole pairs through a Z-scheme mechanism, in which Ag nanoparticles acted as charge separation centers.展开更多
Polypyrrole‐modified graphitic carbon nitride composites(PPy/g‐C3N4)are fabricated using an in‐situ polymerization method to improve the visible light photocatalytic activity of g‐C3N4.The PPy/g‐C3N4 is applied t...Polypyrrole‐modified graphitic carbon nitride composites(PPy/g‐C3N4)are fabricated using an in‐situ polymerization method to improve the visible light photocatalytic activity of g‐C3N4.The PPy/g‐C3N4 is applied to the photocatalytic degradation of methylene blue(MB)under visible light irradiation.Various characterization techniques are employed to investigate the relationship between the structural properties and photoactivities of the as‐prepared composites.Results show that the specific surface area of the PPy/g‐C3N4 composites increases upon assembly of the amorphous PPy nanoparticles on the g‐C3N4 surface.Owing to the strong conductivity,the PPy can be used as a transition channel for electrons to move onto the g‐C3N4 surface,thus inhibiting the recombination of photogenerated carriers of g‐C3N4 and improving the photocatalytic performance.The elevated light adsorption of PPy/g‐C3N4 composites is attributed to the strong absorption coefficient of PPy.The composite containing 0.75 wt%PPy exhibits a photocatalytic efficiency that is 3 times higher than that of g‐C3N4 in 2 h.Moreover,the degradation kinetics follow a pseudo‐first‐order model.A detailed photocatalytic mechanism is proposed with·OH and·O2-radicals as the main reactive species.The present work provides new insights into the mechanistic understanding of PPy in PPy/g‐C3N4 composites for environmental applications.展开更多
The Bi_4Ti_3O_(12)/g-C_3N_4 composites with microsheet and nanosheet structure were prepared through facile ultrasonic-assisted method. The SEM and TEM results suggested that the nanosheets g-C_3N_4 were stacked on th...The Bi_4Ti_3O_(12)/g-C_3N_4 composites with microsheet and nanosheet structure were prepared through facile ultrasonic-assisted method. The SEM and TEM results suggested that the nanosheets g-C_3N_4 were stacked on the surface of regular Bi_4Ti_3O_(12) sheets. Comparing with pure Bi_4Ti_3O_(12) and g-C_3N_4, the Bi_4Ti_3O_(12)/g-C_3N_4 composites showed significant enhancement in photocatalytic efficiency for the degradation of RhB in solution. With the mass ratio of g-C_3N_4 increasing to 10 wt%, the Bi_4Ti_3O_(12)/g-C_3N_4-10% presented the best photocatalytic activity. Its photocatalysis reaction constant was approximately 2 times higher than the single component Bi_4Ti_3O_(12) or g-C_3N_4. Meanwhile, good stability and durability for the Bi_4Ti_3O_(12)/g-C_3N_4-10% were confirmed by the recycling experiment and FT-IR analysis. The possible mechanism for the improvements was the matched band positions and the effective separation of photo-excited electrons(e-) and holes(h+). Furthermore, based on the results of active species trapping, photo-generated holes(h+) and superoxide radical(·O2-) could be the main radicals in reaction.展开更多
The modification of graphitic carbon nitride can significantly improve the photocatalytic performance of graphitic carbon nitride(g-C3N4).Fe2O3/nitrogen-deficient g-C3N4-x composite catalysts were prepared with dicyan...The modification of graphitic carbon nitride can significantly improve the photocatalytic performance of graphitic carbon nitride(g-C3N4).Fe2O3/nitrogen-deficient g-C3N4-x composite catalysts were prepared with dicyandiamide as the precursor and Fe3+doped in this study.The composite catalysts were characterized by XRD,SEM,FT-IR,XPS and photocurrent measurements.Close interaction occurred between Fe2O3 and nitrogen deficient g-C3N4-x,more photogenerated electrons were created and effectively separated from the holes,resulting in a decrease of photocarrier recombination,and thus enhancing the photocurrent.Photocatalytic performance experiments showed that Fe2O3/nitrogen deficient g-C3N4-x could utilize lowenergy visible light more efficiently than pure g-C3N4,and the removal rate was 92%in 60 minutes.展开更多
Novel visible light-induced Cr-doped Sr Ti O3-g-C3N4 composite photocatalysts were synthesized by introducing polymeric g-C3N4. The composite photocatalyst was characterized by X-ray diffraction(XRD), high-resolutio...Novel visible light-induced Cr-doped Sr Ti O3-g-C3N4 composite photocatalysts were synthesized by introducing polymeric g-C3N4. The composite photocatalyst was characterized by X-ray diffraction(XRD), high-resolution transmission electron microscopy(HRTEM), Fourier transform infrared(FT-IR) spectroscopy, UV-vis diffuse reflection spectroscopy, photoluminescence(PL) spectroscopy and BET surface area measurements. The photocatalytic oxidation ability of the novel composite photocatalyst was evaluated using methyl orange(MO) as a target pollutant. The photocatalysts exhibited a significantly enhanced photocatalytic performance in degrading MO. The optimal g-C3N4 content for the photodegradation activity of the composite photocatalysts was determined. The as-prepared composite photocatalyst exhibits an improved photocatalytic activity due to enhancement of photo-generated electron-hole separation at the interface.展开更多
The novel visible light-induced carbon nitride(g-C3N4) and Bi VO4 composite photocatalysts were obtained through a simple mixing-calcination method. The physical and photophysical properties of the Bi VO4-g-C3N4 com...The novel visible light-induced carbon nitride(g-C3N4) and Bi VO4 composite photocatalysts were obtained through a simple mixing-calcination method. The physical and photophysical properties of the Bi VO4-g-C3N4 composites were investigated by X-ray diffraction(XRD), Fourier transform infrared(FTIR) spectroscopy, UV-vis diffuse reflection spectroscopy, high-resolution transmission electron microscopy(HRTEM), photoluminescent(PL) spectroscopy, and BET surface area measurements. Photocatalytic oxidation ability of the prepared samples was examined by studying the degradation of rhodamine B(Rh B) as a target pollutant under visible-light irradiation. The composite photocatalysts exhibited an enhanced photocatalytic performance in degrading Rh B. The optimal g-C3N4 content of the composite photocatalysts was determined for the photodegradation activity. The improved photocatalytic activity of the as-prepared composite photocatalyst may be attributed to the enhancement of photo-generated electron-hole separation at the interface.展开更多
The photocatalytic reduction of aqueous Cr(VI)to Cr(III)was preliminarily studied using porousg‐C3N4as a photocatalyst under acidic conditions.The observed synergistic photocatalytic effect ofporous g‐C3N4on a Cr(VI...The photocatalytic reduction of aqueous Cr(VI)to Cr(III)was preliminarily studied using porousg‐C3N4as a photocatalyst under acidic conditions.The observed synergistic photocatalytic effect ofporous g‐C3N4on a Cr(VI)/4‐chlorophenol(4‐CP)composite pollution system was further studiedunder different pH conditions.Compared with single‐component photocatalytic systems for Cr(VI)reduction or4‐CP degradation,the Cr(VI)reduction efficiency and4‐CP degradation efficiency weresimultaneously improved in the Cr(VI)/4‐CP composite pollution system.The synergistic photocatalyticeffect in the Cr(VI)/4‐CP composite pollution system can be attributed to the acceleratedredox reaction between dichromate and4‐CP by electron transfer with porous g‐C3N4.展开更多
Si3N4-Si2N2O composites were fabricated with amorphous nano-sized silicon nitride powders by the liquid phase sintering ( LPS ). The Si2 N2O phase was generated by an in-situ reaction 2 Si3 N4 ( s ) + 1.5 02 ( g...Si3N4-Si2N2O composites were fabricated with amorphous nano-sized silicon nitride powders by the liquid phase sintering ( LPS ). The Si2 N2O phase was generated by an in-situ reaction 2 Si3 N4 ( s ) + 1.5 02 ( g ) = 3 Si2 N2O ( s ) + N2 ( g ) . The content of Si2 N2 O phase up to 60% in the volume was obtained at a sintering temperature of 1 650℃ and reduced when the sintering temperature increased or decreased, indicating the reaction is reversible. The mass loss, relative density and average grain size increased with increasing the sintering temperature. The average grain size was less than 500 nm when the sintering temperature was below 1 700 ℃. The sintering procedure contains a complex crystallization and a phase transition : amorphous silicon nitride→equiaxial α- Si3 N4→ equiaxial β- Si3 N4→ rod- like Si2 N2O→ needle- like β- Si3N4 . Small round-shaped β→ Si3 N4 particles were entrapped in the Si2 N2O grains and a high density of staking faults was situated in the middle of Si2 N2O grains at a sintering temperature of 1 650 ℃. The toughness inereased from 3.5 MPa·m^1/2 at 1 600 ℃ to 7.2 MPa· m^1/2 at 1 800 ℃ . The hardness was as high as 21.5 GPa (Vickers) at 1 600 ℃ .展开更多
A series of graphitic-C3N4/ZnS(g-C3N4/ZnS) supercapacitor electrode materials have been prepared via a one-step calcination process of zinc acetate/thiourea with different mass ratios under nitrogen atmosphere. The ...A series of graphitic-C3N4/ZnS(g-C3N4/ZnS) supercapacitor electrode materials have been prepared via a one-step calcination process of zinc acetate/thiourea with different mass ratios under nitrogen atmosphere. The optimized g-C3N4/ZnS composite shows a highest specific capacitance of 497.7 F/g at 1 A/g and good cycling stability with capacitance retention of 80.4% at 5 A/g after 1000 cycles. Moreover, gC3N4/ZnS composites display an improved supercapacitor performance in terms of specific capacitance compared to the pure g-C3N4 and ZnS. In addition, our designed symmetric supercapacitor device based on g-C3N4/ZnS composite electrodes can exhibit an energy density of 10.4 Wh/kg at a power density of 187.3 W/kg. As a result, g-C3N4/ZnS composites are expected to be a prospective material for supercapacitors and other energy storage applications.展开更多
Aiming at developing novel microwave-transparent ceramics with low dielectric loss, high thermal conductivity and high strength, Si3Na-AIN (30%, mass fraction) composite ceramics with La203 as sintering additive wer...Aiming at developing novel microwave-transparent ceramics with low dielectric loss, high thermal conductivity and high strength, Si3Na-AIN (30%, mass fraction) composite ceramics with La203 as sintering additive were prepared by hot-pressing at 1 800 ℃ and subsequently annealed at 1 450 ℃ and 1 850 ℃ for 2 h and 4 h, respectively. The materials were characterized by XRD and SEM. The effect of annealing process on the phase composition, sintering performance, microstructure, bending strength, dielectric loss and thermal conductivity of the materials was investigated. The results showed that both annealing at 1 850 ℃ and 1 450 ℃ promoted the phase transformation of α-Si3N4 to β-Si3N4. After annealing at 1 850 ℃, grain growth to a certain extent occurred in the materials. Especially, the elongated β-Si3N4 grains showed a slight increase in diameter from 0.2 μm to 0.6 μm approximately and a decrease in aspect ratio. As a result, as the annealing time increased to 4 h, the bending strength declined from 456 MPa to 390 MPa, whereas the dielectric loss decreased to 2.15× 10^-3 and the thermal conductivity increased to 16.3 W/(m.K) gradually. When annealed at 1 450 ℃, increasing the annealing time to 4 h significantly promoted the crystallization of glassy phase to La2Si6N803 phase in the materials, which led to the increase in bending strength to 619 MPa and thermal conductivity to 15.9 W/(m·K), respectively, and simultaneously the decrease in dielectric loss to 1.53× 10^-3.展开更多
Hoppressed Si3N4/SiC platelet composites had been investigated with respect to their microstructure and mechanical properties. The results indicate that Vickers hardness, elastic modulus and fracture toughness of the ...Hoppressed Si3N4/SiC platelet composites had been investigated with respect to their microstructure and mechanical properties. The results indicate that Vickers hardness, elastic modulus and fracture toughness of the composites were increased by the addition of SiC platelet until the content up to 20 vol pct. A slight decrease in flexural Strength was measured at room temperature with increasing SiC platelet content. The high temperature flexural strength tests at 1150, 1250, and 1350℃ were conducted. It was found that the flexural strength at elevated temperature was degraded with the rising temperature, and the downward trend of flexural strength for the composite containing 10 vol. pct SiC platelet was less. The results indicate that SiC platelet had a positive influence on the high temperature strength. Effects of SiC platelet reinforcement were presented展开更多
A silicon dioxide fiber-reinforced silicon nitride matrix (SiOJSi3N4) composite used for radomes was prepared by chemical vapor infiltration (CVI) process using the SiCl4-NH3-H2 system. The effects of the process ...A silicon dioxide fiber-reinforced silicon nitride matrix (SiOJSi3N4) composite used for radomes was prepared by chemical vapor infiltration (CVI) process using the SiCl4-NH3-H2 system. The effects of the process conditions, including infiltration temperature, infiltration time, and gas flux were investigated. The energy dispersion spectra (EDS) result showed that the main elements of this composite contained Si, N, and O. The X-ray diffraction (XRD) results indicated that phases of the composite before and after treatment at 1350℃ were all amorphous. A little fiber pull-out was observed on the cross section of the composite by scan electron microscope (SEM). As a result, the composite exhibited good thermal stability, but an appropriate interface was necessary between the fiber and the matrix.展开更多
Two-dimension (2D) fused-silica fiber reinforced porous silicon nitride matrix composites were fabricated using slurry impregnation and cyclic infiltration with colloidal silica sol. The microstructure and fracture ...Two-dimension (2D) fused-silica fiber reinforced porous silicon nitride matrix composites were fabricated using slurry impregnation and cyclic infiltration with colloidal silica sol. The microstructure and fracture surface were characterized by SEM, the mechanical behavior was investigated by three-point bending test, and the dielectric constant was also measured by impedance analysis. The microstructure showed that the fiber and the matrix had a physical bonding, forming a clearance interface. The mechanical behavior suggested that the porous matrix acted as crack deflection, and the fracture surface had a lot of fiber pull-out. However, the interlaminar shear strength was not so good. The dielectric constant of the composites at room temperature was about 2.8-3.1. The relatively low dielectric constant and non-catastrophic failure indicated the potential application in the radome materials field. 2008 University of Science and Technology Beijing. All rights reserved.展开更多
Total dose effects and single event effects on radiation-hardened power vertical double-diffusion metal oxide semiconductor(VDMOS) devices with composite SiO2-Si3N4 film gates are investigated.The relationships amon...Total dose effects and single event effects on radiation-hardened power vertical double-diffusion metal oxide semiconductor(VDMOS) devices with composite SiO2-Si3N4 film gates are investigated.The relationships among the important electrical parameters of the samples with different thickness SiO2-Si3N4 films,such as threshold voltage,breakdown voltage,and on-state resistance in accumulated dose,are discussed.The total dose experiment results show that the breakdown voltage and the on-state resistance barely change with the accumulated dose.However,the relationships between the threshold voltages of the samples and the accumulated dose are more complex,and not only positively drift,but also negatively drift.At the end of the total dose experiment,we select the group of samples which have the smaller threshold voltage shift to carry out the single event effect studies.We find that the samples with appropriate thickness ratio SiO2-Si3N4 films have a good radiation-hardening ability.This method may be useful in solving both the SEGR and the total dose problems with the composite SiO2-Si3N4 films.展开更多
基金supported by the National Natural Science Foundation of China (51672089)the Industry and Research Collaborative Innovation Major Projects of Guangzhou (201508020098)+1 种基金the State Key Laboratory of Advanced Technology for Material Synthesis and Processing (Wuhan University of Technology) (2015-KF-7)the Hunan Key Laboratory of Applied Environmental Photocatalysis (Changsha University) (CCSU-XT-04)~~
文摘Novel WO3/g-C3N4/Ni(OH)x hybrids have been successfully synthesized by a two-step strategy of high temperature calcination and in situ photodeposition.Their photocatalytic performance was investigated using TEOA as a hole scavenger under visible light irradiation.The loading of WO3 and Ni(OH)x cocatalysts boosted the photocatalytic H2 evolution efficiency of g-C3N4.WO3/g-C3N4/Ni(OH)x with 20 wt%defective WO3 and 4.8 wt%Ni(OH)x showed the highest hydrogen production rate of 576 μmol/(g·h),which was 5.7,10.8 and 230 times higher than those of g-C3N4/4.8 wt%Ni(OH)x,20 wt%WO3/C3N4 and g-C3N4 photocatalysts,respectively.The remarkably enhanced H2 evolution performance was ascribed to the combination effects of the Z-scheme heterojunction(WO3/g-C3N4) and loaded cocatalysts(Ni(OH)x),which effectively inhibited the recombination of the photoexcited electron-hole pairs of g-C3N4 and improved both H2 evolution and TEOA oxidation kinetics.The electron spin resonance spectra of ·O2^- and ·OH radicals provided evidence for the Z-scheme charge separation mechanism.The loading of easily available Ni(OH)x cocatalysts on the Z-scheme WO3/g-C3N4 nanocomposites provided insights into constructing a robust multiple-heterojunction material for photocatalytic applications.
基金supported by the Open Project Program of Hubei Key Laboratory of Animal Nutrition and Feed Science,Wuhan Polytechnic University(No.201808)Hubei Important Project of Technological Innovation(2018ABA094)~~
文摘To further improve the charge separation and photocatalytic activities of g-C3N4 and CdMoO4 under visible light irradiation,CdMoO4/g-C3N4 composites were rationally synthesized by a facile precipitation-calcination procedure.The crystal phases,morphologies,chemical compositions,textural structures,and optical properties of the as-prepared composites were characterized by the corresponding analytical techniques.The photocatalytic activities toward degradation of rhodamine B solution were evaluated under visible light irradiation.The results revealed that integrating CdMoO4 with g-C3N4 could remarkably improve the charge separation and photocatalytic activity,compared with those of pristine g-C3N4 and CdMoO4.This would be because the CdMoO4/g-C3N4 composites could facilitate the transfer and separation of the photoexcited electron-hole pairs,which was confirmed by electrochemical impedance spectroscopy,transient photocurrent responses,and photoluminescence measurements.Moreover,active species trapping experiments demonstrated that holes(h+)and superoxide radicals(?O2?)were the main active species during the photocatalytic reaction.A possible photocatalytic mechanism was proposed on the basis of the energy band structures determined by Mott-Schottky tests.This work would provide further insights into the rational fabrication of composites for organic contaminant removal.
基金supported by the National Natural Science Foundation of China(51572103,51502106)the Distinguished Young Scholar of Anhui Province(1808085J14)+2 种基金the Foundation for Young Talents in College of Anhui Province(gxyqZD2017051)the Key Foundation of Educational Commission of Anhui Province(KJ2016SD53)Innovation Team of Design and Application of Advanced Energetic Materials(KJ2015TD003)~~
文摘In recent years,environmental pollution and energy crisis have become increasingly serious issues owing to the burning of fossil fuels.Among the many technologies,decomposition of water to produce hydrogen has attracted much attention because of its sustainability and non-polluting characteristic.However,highly efficient decomposition of water that is driven by visible light is still a challenge.Herein,we report the large-scale preparation of step-scheme porous graphite carbon nitride/Zn0.2Cd0.8S-diethylenetriamine(Pg-C3N4/Zn0.2Cd0.8S-DETA)composite by a facile solvothermal method.It was found by UV-vis spectroscopy that 15%Pg-C3N4/Zn0.2Cd0.8S-DETA exhibited suitable visible absorption edge and band gap for water decomposition.The hydrogen production rate of 15%Pg-C3N4/Zn0.2Cd0.8S-DETA composite was 6.69 mmol g^-1 h^-1,which was 16.73,1.61,and 1.44 times greater than those of Pg-C3N4,CdS-DETA,and Zn0.2Cd0.8S-DETA,respectively.In addition,15%Pg-C3N4/Zn0.2Cd0.8S-DETA composite displayed excellent photocatalytic stability,which was maintained for seven cycles of photocatalytic water splitting test.We believe that 15%Pg-C3N4/Zn0.2Cd0.8S-DETA composite can be a valuable guide for the development of solar hydrogen production applications in the near future.
基金financial aid from the National Natural Science Foundation of China(NSFC No.51472133)
文摘The ternary plasmonic Ag Cl/Ag/g-C_3N_4 photocatalysts were successfully fabricated by a modified deposition–precipitation method, through which Ag/Ag Cl nanoparticles(5–15 nm in size) were evenly dispersed on the surface of g-C_3N_4. The Ag Cl/Ag/g-C_3N_4 composites exhibited higher photocatalytic activity than Ag/Ag Cl and g-C_3N_4. The enhanced photocatalytic performance could be attributed to an efficient separation of electron–hole pairs through a Z-scheme mechanism, in which Ag nanoparticles acted as charge separation centers.
文摘Polypyrrole‐modified graphitic carbon nitride composites(PPy/g‐C3N4)are fabricated using an in‐situ polymerization method to improve the visible light photocatalytic activity of g‐C3N4.The PPy/g‐C3N4 is applied to the photocatalytic degradation of methylene blue(MB)under visible light irradiation.Various characterization techniques are employed to investigate the relationship between the structural properties and photoactivities of the as‐prepared composites.Results show that the specific surface area of the PPy/g‐C3N4 composites increases upon assembly of the amorphous PPy nanoparticles on the g‐C3N4 surface.Owing to the strong conductivity,the PPy can be used as a transition channel for electrons to move onto the g‐C3N4 surface,thus inhibiting the recombination of photogenerated carriers of g‐C3N4 and improving the photocatalytic performance.The elevated light adsorption of PPy/g‐C3N4 composites is attributed to the strong absorption coefficient of PPy.The composite containing 0.75 wt%PPy exhibits a photocatalytic efficiency that is 3 times higher than that of g‐C3N4 in 2 h.Moreover,the degradation kinetics follow a pseudo‐first‐order model.A detailed photocatalytic mechanism is proposed with·OH and·O2-radicals as the main reactive species.The present work provides new insights into the mechanistic understanding of PPy in PPy/g‐C3N4 composites for environmental applications.
基金Supported by the National Natural Science Foundation of China(51509220)the Natural Science Foundation of Zhejiang Province(LQ14E090003)+1 种基金Ningbo Science and Technology Plan Projects(2014C50007,2014C51003)Ningbo major social development projects(2017C510006)
文摘The Bi_4Ti_3O_(12)/g-C_3N_4 composites with microsheet and nanosheet structure were prepared through facile ultrasonic-assisted method. The SEM and TEM results suggested that the nanosheets g-C_3N_4 were stacked on the surface of regular Bi_4Ti_3O_(12) sheets. Comparing with pure Bi_4Ti_3O_(12) and g-C_3N_4, the Bi_4Ti_3O_(12)/g-C_3N_4 composites showed significant enhancement in photocatalytic efficiency for the degradation of RhB in solution. With the mass ratio of g-C_3N_4 increasing to 10 wt%, the Bi_4Ti_3O_(12)/g-C_3N_4-10% presented the best photocatalytic activity. Its photocatalysis reaction constant was approximately 2 times higher than the single component Bi_4Ti_3O_(12) or g-C_3N_4. Meanwhile, good stability and durability for the Bi_4Ti_3O_(12)/g-C_3N_4-10% were confirmed by the recycling experiment and FT-IR analysis. The possible mechanism for the improvements was the matched band positions and the effective separation of photo-excited electrons(e-) and holes(h+). Furthermore, based on the results of active species trapping, photo-generated holes(h+) and superoxide radical(·O2-) could be the main radicals in reaction.
基金Supported by the Fuling Shale Gas Environmental Exploration Technology of National Science and Technology Special Project(No.2016ZX05060)the Demonstration of Integrated Management of Rocky Desertification and Enhancement of Ecological Service Function in Karst Peak-cluster Depression(No.2016YFC0502400)National Natural Science Foundation of China(No.51709254)
文摘The modification of graphitic carbon nitride can significantly improve the photocatalytic performance of graphitic carbon nitride(g-C3N4).Fe2O3/nitrogen-deficient g-C3N4-x composite catalysts were prepared with dicyandiamide as the precursor and Fe3+doped in this study.The composite catalysts were characterized by XRD,SEM,FT-IR,XPS and photocurrent measurements.Close interaction occurred between Fe2O3 and nitrogen deficient g-C3N4-x,more photogenerated electrons were created and effectively separated from the holes,resulting in a decrease of photocarrier recombination,and thus enhancing the photocurrent.Photocatalytic performance experiments showed that Fe2O3/nitrogen deficient g-C3N4-x could utilize lowenergy visible light more efficiently than pure g-C3N4,and the removal rate was 92%in 60 minutes.
基金Funded by the National Natural Science Foundation of China(No.51208102)
文摘Novel visible light-induced Cr-doped Sr Ti O3-g-C3N4 composite photocatalysts were synthesized by introducing polymeric g-C3N4. The composite photocatalyst was characterized by X-ray diffraction(XRD), high-resolution transmission electron microscopy(HRTEM), Fourier transform infrared(FT-IR) spectroscopy, UV-vis diffuse reflection spectroscopy, photoluminescence(PL) spectroscopy and BET surface area measurements. The photocatalytic oxidation ability of the novel composite photocatalyst was evaluated using methyl orange(MO) as a target pollutant. The photocatalysts exhibited a significantly enhanced photocatalytic performance in degrading MO. The optimal g-C3N4 content for the photodegradation activity of the composite photocatalysts was determined. The as-prepared composite photocatalyst exhibits an improved photocatalytic activity due to enhancement of photo-generated electron-hole separation at the interface.
基金Funded by the National Natural Science Foundation of China(No.51208102)
文摘The novel visible light-induced carbon nitride(g-C3N4) and Bi VO4 composite photocatalysts were obtained through a simple mixing-calcination method. The physical and photophysical properties of the Bi VO4-g-C3N4 composites were investigated by X-ray diffraction(XRD), Fourier transform infrared(FTIR) spectroscopy, UV-vis diffuse reflection spectroscopy, high-resolution transmission electron microscopy(HRTEM), photoluminescent(PL) spectroscopy, and BET surface area measurements. Photocatalytic oxidation ability of the prepared samples was examined by studying the degradation of rhodamine B(Rh B) as a target pollutant under visible-light irradiation. The composite photocatalysts exhibited an enhanced photocatalytic performance in degrading Rh B. The optimal g-C3N4 content of the composite photocatalysts was determined for the photodegradation activity. The improved photocatalytic activity of the as-prepared composite photocatalyst may be attributed to the enhancement of photo-generated electron-hole separation at the interface.
基金supported by the National Natural Science Foundation of China(51568049,51468043,21366024,21665018)the National Science Fund for Excellent Young Scholars(51422807)+2 种基金the Natural Science Foundation of Jiangxi Province,China(20161BAB206118,20171ACB21035)the Distinguished Youth Science Fund of Jiangxi Province(20162BCB23043)the Natural Science Foundation of Jiangxi Provincial Department of Education,China(GJJ14515)~~
文摘The photocatalytic reduction of aqueous Cr(VI)to Cr(III)was preliminarily studied using porousg‐C3N4as a photocatalyst under acidic conditions.The observed synergistic photocatalytic effect ofporous g‐C3N4on a Cr(VI)/4‐chlorophenol(4‐CP)composite pollution system was further studiedunder different pH conditions.Compared with single‐component photocatalytic systems for Cr(VI)reduction or4‐CP degradation,the Cr(VI)reduction efficiency and4‐CP degradation efficiency weresimultaneously improved in the Cr(VI)/4‐CP composite pollution system.The synergistic photocatalyticeffect in the Cr(VI)/4‐CP composite pollution system can be attributed to the acceleratedredox reaction between dichromate and4‐CP by electron transfer with porous g‐C3N4.
基金Funded by the National Science Foundation of China ( No.50375037)
文摘Si3N4-Si2N2O composites were fabricated with amorphous nano-sized silicon nitride powders by the liquid phase sintering ( LPS ). The Si2 N2O phase was generated by an in-situ reaction 2 Si3 N4 ( s ) + 1.5 02 ( g ) = 3 Si2 N2O ( s ) + N2 ( g ) . The content of Si2 N2 O phase up to 60% in the volume was obtained at a sintering temperature of 1 650℃ and reduced when the sintering temperature increased or decreased, indicating the reaction is reversible. The mass loss, relative density and average grain size increased with increasing the sintering temperature. The average grain size was less than 500 nm when the sintering temperature was below 1 700 ℃. The sintering procedure contains a complex crystallization and a phase transition : amorphous silicon nitride→equiaxial α- Si3 N4→ equiaxial β- Si3 N4→ rod- like Si2 N2O→ needle- like β- Si3N4 . Small round-shaped β→ Si3 N4 particles were entrapped in the Si2 N2O grains and a high density of staking faults was situated in the middle of Si2 N2O grains at a sintering temperature of 1 650 ℃. The toughness inereased from 3.5 MPa·m^1/2 at 1 600 ℃ to 7.2 MPa· m^1/2 at 1 800 ℃ . The hardness was as high as 21.5 GPa (Vickers) at 1 600 ℃ .
基金supported by the National Nature Science Foundations of China (Grant no. 51372212)
文摘A series of graphitic-C3N4/ZnS(g-C3N4/ZnS) supercapacitor electrode materials have been prepared via a one-step calcination process of zinc acetate/thiourea with different mass ratios under nitrogen atmosphere. The optimized g-C3N4/ZnS composite shows a highest specific capacitance of 497.7 F/g at 1 A/g and good cycling stability with capacitance retention of 80.4% at 5 A/g after 1000 cycles. Moreover, gC3N4/ZnS composites display an improved supercapacitor performance in terms of specific capacitance compared to the pure g-C3N4 and ZnS. In addition, our designed symmetric supercapacitor device based on g-C3N4/ZnS composite electrodes can exhibit an energy density of 10.4 Wh/kg at a power density of 187.3 W/kg. As a result, g-C3N4/ZnS composites are expected to be a prospective material for supercapacitors and other energy storage applications.
基金Project(50872052) supported by the National Natural Science Foundation of ChinaProject(2009AA05Z313) supported by the National High Technology Research and Development Program of ChinaProject supported by the Commission of Science,Technology and Industry for National Defence,China
文摘Aiming at developing novel microwave-transparent ceramics with low dielectric loss, high thermal conductivity and high strength, Si3Na-AIN (30%, mass fraction) composite ceramics with La203 as sintering additive were prepared by hot-pressing at 1 800 ℃ and subsequently annealed at 1 450 ℃ and 1 850 ℃ for 2 h and 4 h, respectively. The materials were characterized by XRD and SEM. The effect of annealing process on the phase composition, sintering performance, microstructure, bending strength, dielectric loss and thermal conductivity of the materials was investigated. The results showed that both annealing at 1 850 ℃ and 1 450 ℃ promoted the phase transformation of α-Si3N4 to β-Si3N4. After annealing at 1 850 ℃, grain growth to a certain extent occurred in the materials. Especially, the elongated β-Si3N4 grains showed a slight increase in diameter from 0.2 μm to 0.6 μm approximately and a decrease in aspect ratio. As a result, as the annealing time increased to 4 h, the bending strength declined from 456 MPa to 390 MPa, whereas the dielectric loss decreased to 2.15× 10^-3 and the thermal conductivity increased to 16.3 W/(m.K) gradually. When annealed at 1 450 ℃, increasing the annealing time to 4 h significantly promoted the crystallization of glassy phase to La2Si6N803 phase in the materials, which led to the increase in bending strength to 619 MPa and thermal conductivity to 15.9 W/(m·K), respectively, and simultaneously the decrease in dielectric loss to 1.53× 10^-3.
文摘Hoppressed Si3N4/SiC platelet composites had been investigated with respect to their microstructure and mechanical properties. The results indicate that Vickers hardness, elastic modulus and fracture toughness of the composites were increased by the addition of SiC platelet until the content up to 20 vol pct. A slight decrease in flexural Strength was measured at room temperature with increasing SiC platelet content. The high temperature flexural strength tests at 1150, 1250, and 1350℃ were conducted. It was found that the flexural strength at elevated temperature was degraded with the rising temperature, and the downward trend of flexural strength for the composite containing 10 vol. pct SiC platelet was less. The results indicate that SiC platelet had a positive influence on the high temperature strength. Effects of SiC platelet reinforcement were presented
基金This study was financially supported by the Key Foundation of National Science in China (No. 90405015), the National Elitist Youth Foundation of China (No. 50425208the Doctorate Foundation of Northwestern Polytechnical University (CX200505).
文摘A silicon dioxide fiber-reinforced silicon nitride matrix (SiOJSi3N4) composite used for radomes was prepared by chemical vapor infiltration (CVI) process using the SiCl4-NH3-H2 system. The effects of the process conditions, including infiltration temperature, infiltration time, and gas flux were investigated. The energy dispersion spectra (EDS) result showed that the main elements of this composite contained Si, N, and O. The X-ray diffraction (XRD) results indicated that phases of the composite before and after treatment at 1350℃ were all amorphous. A little fiber pull-out was observed on the cross section of the composite by scan electron microscope (SEM). As a result, the composite exhibited good thermal stability, but an appropriate interface was necessary between the fiber and the matrix.
基金the National Natural Science Foundation of China(No.90405015)the National Young Elitist Foundation(No.50425208).
文摘Two-dimension (2D) fused-silica fiber reinforced porous silicon nitride matrix composites were fabricated using slurry impregnation and cyclic infiltration with colloidal silica sol. The microstructure and fracture surface were characterized by SEM, the mechanical behavior was investigated by three-point bending test, and the dielectric constant was also measured by impedance analysis. The microstructure showed that the fiber and the matrix had a physical bonding, forming a clearance interface. The mechanical behavior suggested that the porous matrix acted as crack deflection, and the fracture surface had a lot of fiber pull-out. However, the interlaminar shear strength was not so good. The dielectric constant of the composites at room temperature was about 2.8-3.1. The relatively low dielectric constant and non-catastrophic failure indicated the potential application in the radome materials field. 2008 University of Science and Technology Beijing. All rights reserved.
文摘Total dose effects and single event effects on radiation-hardened power vertical double-diffusion metal oxide semiconductor(VDMOS) devices with composite SiO2-Si3N4 film gates are investigated.The relationships among the important electrical parameters of the samples with different thickness SiO2-Si3N4 films,such as threshold voltage,breakdown voltage,and on-state resistance in accumulated dose,are discussed.The total dose experiment results show that the breakdown voltage and the on-state resistance barely change with the accumulated dose.However,the relationships between the threshold voltages of the samples and the accumulated dose are more complex,and not only positively drift,but also negatively drift.At the end of the total dose experiment,we select the group of samples which have the smaller threshold voltage shift to carry out the single event effect studies.We find that the samples with appropriate thickness ratio SiO2-Si3N4 films have a good radiation-hardening ability.This method may be useful in solving both the SEGR and the total dose problems with the composite SiO2-Si3N4 films.