Homogeneous formation of polychlorinated dibenzothiophenes/thianthrenes(PCDT/TAs),sulfurated compounds analogous to polychlorinated dibenzo-p-dioxin/dibenzofurans(PCDD/Fs), has been well-documented to occur via ra...Homogeneous formation of polychlorinated dibenzothiophenes/thianthrenes(PCDT/TAs),sulfurated compounds analogous to polychlorinated dibenzo-p-dioxin/dibenzofurans(PCDD/Fs), has been well-documented to occur via radical–radical coupling reactions from chlorinated thiophenol precursors. However, the current understanding of the formation mechanism of PCDT/TAs is exclusively limited to the inherent point of view that chlorothiophenoxy radicals act as the only required intermediates for PCDT/TAs. This study investigates reaction pathways for the formation of PCDT/TAs involving two new types of radical species, i.e., substituted phenyl radicals and substituted thiophenoxyl diradicals. Taking 2-chlorothiophenol(2-CTP) as a model compound for chlorothiophenols,we found that apart from the mostly discussed chlorothiophenoxy radicals, substituted phenyl radicals and substituted thiophenoxyl diradicals could also be readily formed via the reaction of 2-CTP with H radicals. Furthermore, direct self-and cross-coupling of these radicals can result in the formation of PCDT/TAs, including 1-monochlorothianthrene(1-MCTA), 1,6-dichlorothianthrene(1,6-DCTA), 4,6-dichlorodibenzothiophene(4,6-DCDT)and 1,6-dichlorodibenzothiophene(1,6-DCDT). The pathways proposed in this work are proven to be both thermodynamically and kinetically favorable. Particularly, comparisons were made between the formation mechanisms of sulfurated and oxygenated dioxin systems from an energetic point view, showing that replacing oxygen with sulfur atoms greatly reduces the activation barriers of the rate-controlling steps involved in the PCDT/TA formation processes compared with those involved for PCDD/Fs. The calculated results in this work may improve our understanding of the formation mechanism of PCDT/TAs from chlorothiophenol precursors and should be informative to environmental scientists.展开更多
Aromatic fractions of 140 oils and condensates that originated from different types of source rocks (marine shale,terrestrial shale and marine carbonate) were analyzed using gas chromatographymass spectrometry (GC...Aromatic fractions of 140 oils and condensates that originated from different types of source rocks (marine shale,terrestrial shale and marine carbonate) were analyzed using gas chromatographymass spectrometry (GC-MS) to investigate the relative distributions of methylated dibenzothiophenes with respect to thermal maturity.The positions of methyl groups of trimethyldibenzothiophene isomers (TMDBTs) including those used in the definition of maturity indicator TMDBT index in previous studies were firmly identified by co-elution of internal standards in GC-MS analysis and by comparing with reported retention indices.A new maturity ratio related to dimethyldibenzothiophenes (DMDBTs) is proposed on the basis of the differences in thermodynamic stability among different DMDBT isomers.Another maturity index (TMDBT-I2) based on TMDBTs is also suggested on the basis of our empirical observations and presumed thermodynamic stability of TMDBT isomers.These two newly proposed (2,6 + 3,6)-/1,4-DMDBT ratio and TMDBT-I2 correlate well with MDR (4-/1-methyldibenzothiophene)and 2,4-/1,4-DMDBT ratios,suggesting their common chemical reaction mechanisms and similar behavior with increasing maturity.Therefore,they can be effectively applied for maturity assessments.Furthermore,the TMDBTs related maturity parameters are more reliable for over-mature oils and condensates due to the relatively higher concentrations of thermodynamically unstable TMDBT isomers,i.e.1,4,6-,1,4,8-and 3,4,6-TMDBT in this study than those of 1-methyldibenzothiophene (1-MDBT) or 1,4-DMDBT.In contrast with 4,6-/1,4-DMDBT,the newly proposed (2,6 + 3,6)-/1,4-DMDBT ratios for oils that originated from different types of source rocks have approximately same relationship with the oil maturity (Rc %).This suggests that the lithology and organic facies may have relatively less influence on (2,6 + 3,6)-/1,4-DMDBT ratio compared to 4,6-/1,4-DMDBT.The maturity parameters based on methylated dibenzothiophenes are particularly useful in the maturity assessments of post-and over-mature oils and condensates and can complement maturity indicators based on steranes and terpanes.展开更多
The structural and thermodynamic (PCTAs) in the ideal gas state at 298.15 K and 1.013 properties of 75 polychlorinated thianthrenes ×10^5 Pa have been calculated at the B3LYP/6- 31G* level using Gaussian 98 pr...The structural and thermodynamic (PCTAs) in the ideal gas state at 298.15 K and 1.013 properties of 75 polychlorinated thianthrenes ×10^5 Pa have been calculated at the B3LYP/6- 31G* level using Gaussian 98 program. Based on the output data of Gaussian, the isodesmic reactions were designed to calculate standard enthalpy of formation (△fH^θ) and standard free energy of formation (△fH^θ) of PCTAs congeners. The relations of these thermodynamic parameters with the number and position of C1 atom substitution (Npcs) were discussed, and it was found that there exists high correlation between thermodynamic parameters (total energy (TE), zero-point vibrational energy (ZPE), thermal correction to energy (Eth), heat capacity at constant volume (Cv^θ), entropy (S^θ), enthalpy (H^θ), free energy (G^θ), standard enthalpies of formation (△fH^θ) and standard Gibbs energies of formation (△fG^θ)) and Npcs. On the basis of the relative magnitude of their △fG^θ, the order of relative stability of PCTA congeners was theoretically proposed. In addition, the correlations between structural parameters and Npcs were also discussed. The good correlations were found between molecular average polarizability (α), energy of the highest occupied molecular orbital (EHOMO), molecular volume (Vm) and Npcs, and all R^2 values are larger than 0.95. Moreover, it was supposed that the isomer groups with higher toxicity should be Tri-CTA and TCTA.展开更多
The thermodynamic properties of 135 polybrominated dibenzothiophenes (PBDTs) in the gaseous state at 298.15 K and 1.013×10^5 Pa, are calculated using the density functional theory (the B3LYP/6-311G^**) wit...The thermodynamic properties of 135 polybrominated dibenzothiophenes (PBDTs) in the gaseous state at 298.15 K and 1.013×10^5 Pa, are calculated using the density functional theory (the B3LYP/6-311G^**) with Gaussian 03. Based on these data, the isodesmic reacflons are designed to calculate the standard enthalpy of formation (△fH^θ) and the standard Gibbs energy of formation (△fG^θ) of PBDTs. The relations of these thermodynamic parameters with the number and positionof bromine subsfituents (NPBS) are discussed, and it is found that there exist good correlations between othermody namic parameters (including heat capacity at constant volume, entropy, enthaipy, free energy, △fH^θ, △fG^θ) and NPBS. Thoe relative stability order of PBDT congeners is proposed theoretically based on the relative magnitude of their △fG^θ. In addition, the values of molar heat capacities at constant pressure (Cp,m) for PBDT c ongelaers are calculated.展开更多
Polychlorinated dibenzothiophenes(PCDTs)and their corresponding sulfone(PCDTO2)compounds are a group of important persistent organic pollutants.In the present study,geometrical optimization and subsequent calculat...Polychlorinated dibenzothiophenes(PCDTs)and their corresponding sulfone(PCDTO2)compounds are a group of important persistent organic pollutants.In the present study,geometrical optimization and subsequent calculations of electrostatic potentials(ESPs)on molecular surface have been performed for all 135 PCDTs and 135 PCDTO2 congeners at the HF/6-31G*level of theory.A number of statistically-based parameters have been extracted.Linear relationship between gas-chromatographic retention index(RI)and the structural descriptors have been established by multiple linear regression.The result shows that two descriptors derived from positive electrostatic potential on molecular surface, ■ and π,together with the molecular volume(Vmc)and the energy of the lowest unoccupied molecular orbital(ELUMO)can be well used to express the quantitative structure-retention relationship(QSRR)of PCDTs and PCDTO2.Predictive capability of the two models has been demonstrated by leave-one-out cross-validation with the cross-validated correlation coefficient(RCV)of 0.996 and 0.997,respectively.Furthermore,the predictive power of the models is further examined for the external test set.Correlation coefficients(R)between the observed and predicted RI values for the external test set are 0.997 and0.998,respectively,validating the robustness and good prediction of our model.The QSRR model established may provide again a powerful method for predicting chromatographic properties of aromatic organosulfur compounds.展开更多
Variations in the distributions of carbazoles and dibenzothiophenes were investigated in a set of source rocks, which differ mainly in their maturity levels during immature-mature stages. A comparison of the distribut...Variations in the distributions of carbazoles and dibenzothiophenes were investigated in a set of source rocks, which differ mainly in their maturity levels during immature-mature stages. A comparison of the distributions of carbazoles and dibenzothiophenes has revealed the main results as follows: variations in the relative amounts ①of C0-, C1-, C2-dibenzothiophenes show a low correlation with that of the corresponding carbazoles, with the former's being much higher than the latter's; variations in the relative amounts of methyldibe② nzothiophene isomers also display a low correlation with that of the corresponding methylcarbazoles, with 4-/4- +1-methyldibenzothiophene ratio ranging from 0.52 to 0.96, while the corresponding carbazole ratio of 1-/1- +4-methylcarbazole only being 0.71±0.05; the mat③ urity parameter for 4,6-/4,6- +1,4-dimethyldibenzothiohene, ranging from 0.34 to 0.75, shows a remarkable linear correlation with the corresponding ratio of 1,8-/1,8- +1,4-dimethylcarbazole(R2>0.84). The un-correlation may indicate some different geological-geochemical fates for some isomers of dibenzothiophenes and carbazoles. The high correlation may reveal a strong maturation dependence on the dimethylcarbazole distributions, indicating that attention should be paid when 1,8-/1,8- +1,4-dimethylcarbazole is used as a petroleum migration indicator.展开更多
A novel composite material(TD)composed of TS-1 microcrystalline and dendritic mesoporous silica nanospheres(DMSNs)was successfully prepared.The TD composite material had open pore structure and large specific surface ...A novel composite material(TD)composed of TS-1 microcrystalline and dendritic mesoporous silica nanospheres(DMSNs)was successfully prepared.The TD composite material had open pore structure and large specific surface area,which was conducive to the mass transfer of reactants and products.The Ti element in TS-1 could be used as an electron assistant,and the spillover d-electrons were conducive to the improvement of the sulfidation and dispersion of MoS_(2),thereby forming more type II MoS_(2) active phases.The incorporation of Ti could bring more Brønsted(B)and Lewis(L)acid,which was conducive to the hydrogenation pathway(HYD)selectivity(41.2%)of dibenzothiophene(DBT)hydrodesulfurization(HDS)and isomerization(ISO)route selectivity(21.9%)of 4,6-dimethyldibenzothiophene(4,6-DMDBT)HDS,thus improve the HDS activity of DBT and 4,6-DMDBT.NiMo/TD-70(Aging temperature=70℃)had the best HDS activities of DBT(99.0%)and 4,6-DMDBT(93.7%)due to its large open pore structure,good acidity,suitable metal-support interaction(MSI)and perfect dispersion of the metallic active sites.展开更多
Micro-mesoporous ZK-1 molecular sieves with different Si/Al ratios were used as supports for binary Co-Mo hydrodesulfurization(HDS) catalysts.The CoMo/ZK-1 catalysts were prepared using an over-loading impregnation ...Micro-mesoporous ZK-1 molecular sieves with different Si/Al ratios were used as supports for binary Co-Mo hydrodesulfurization(HDS) catalysts.The CoMo/ZK-1 catalysts were prepared using an over-loading impregnation method,and characterized using N2 physisorption,X-ray diffraction,temperature-programmed NH3 desorption,temperature-programmed reduction(TPR),ultraviolet-visible diffuse reflectance spectroscopy,and high-resolution transmission electron microscopy(HRTEM).The results show that the CoMo/ZK-1 catalysts have high surface areas(~700 m^2/g),large pore volumes,and hierarchical porous structures,which promote the dispersion of Co and Mo oxide phases on the ZK-1 supports.The TPR results show that the interactions between the Co and Mo oxide phases and the ZK-1 support are weaker than those in the CoMo/γ-Al2O3 catalyst.The HRTEM results show that the CoMo/ZK-1 catalysts have better MoS2 dispersion and more active edge sites.The catalysts were tested in HDS of dibenzothiophene.Under mild reaction conditions,the activity of Co and Mo sulfides supported on ZK-1 was higher than those of Co and Mo sulfides supported on ZSM-5,A1KIT-1,and γ-Al2O3.展开更多
A few-layered hexagonal boron nitride nanosheets stabilized platinum nanoparticles(Pt/h-BNNS)is engineered for oxidation-promoted adsorptive desulfurization(OPADS)of fuel oil.It was found that the few-layered structur...A few-layered hexagonal boron nitride nanosheets stabilized platinum nanoparticles(Pt/h-BNNS)is engineered for oxidation-promoted adsorptive desulfurization(OPADS)of fuel oil.It was found that the few-layered structure and the defective sites of h-BNNS not only are beneficial to the stabilization of Pt NPs but also favor the adsorption of aromatic sulfides.By employing Pt/h-BNNS with a Pt loading amount of 1.19 wt%as the active adsorbent and air as an oxidant,a 98.0%sulfur removal over dibenzothiophene(DBT)is achieved along with a total conversion of the DBT to the corresponding sulfones(DBTO_(2)).Detailed experiments show that the excellent desulfurization activity originates from the few-layered structure of h-BNNS and the high catalytic activity of Pt NPs.In addition,the OPADS system with Pt/h-BNNS as the active adsorbent shows remarkable stability in desulfurization performance with the existence of different interferents such as olefin,and aromatic hydrocarbons.Besides,the Pt/h-BNNS can be recycled 12 times without a significant decrease in desulfurization performance.Also,a process flow diagram is proposed for deep desulfurization of fuel oil and recovery of high value-added products,which would promote the industrial application of such OPADS strategy.展开更多
By using the bimodal mesoporous silica(BMMS) as the carrier and butyl titanate as the titanium source, the TiO_2/BMMS catalyst was prepared. The samples were characterized by XRD, XRF, N_2 adsorption and desorption, F...By using the bimodal mesoporous silica(BMMS) as the carrier and butyl titanate as the titanium source, the TiO_2/BMMS catalyst was prepared. The samples were characterized by XRD, XRF, N_2 adsorption and desorption, FTIR, UVvis,SEM, EDS, and TEM techniques. The test results showed that TiO_2 was amorphous, the TiO_2/BMMS catalyst had an ordered bimodal mesoporous structure, and the chemical interaction existed between BMMS and TiO_2. Since the TiO_2/BMMS had a lower band gap, its photocatalytic activity was better than TiO_2. Under UV irradiation a one-pot PODS system was set up, using TiO_2/BMMS as the catalyst, H_2O_2 as the oxidant, and methanol as the solvent. The TiO_2/BMMS catalyst showed better photocatalytic activity than the mono-modal mesoporous TiO_2/SBA-15 catalyst, and the desulfurization rate of dibenzothiophene(DBT) over TiO_2/BMMS catalyst could reach 99._2%. The TiO_2/BMMS catalyst also had so good stability that the desulfurization rate of DBT did not drop apparently after 8 cycles of reusing, and could still be close to 90%.展开更多
Sulfur emission through fuel combustion is a global problem because it is a major cause of acid rain. Crud oil contains many heterocyclic organic sulfur compounds, among which dibenzothiophene(DBT) and DBTs bearing al...Sulfur emission through fuel combustion is a global problem because it is a major cause of acid rain. Crud oil contains many heterocyclic organic sulfur compounds, among which dibenzothiophene(DBT) and DBTs bearing alkyl substitutions usually are representative compounds. A strain was isolated from refinery sludge and identified as Corynebacterium ZD-1. The behavior of DBT degradation by ZD-1 in aqueous phase was investigated. Corynebacterium ZD-1 could metabolize DBT to 2-hydroxybiphenyl(2-HBP) as the dead-end metabolite through a sulfur-specific pathway. In shake flask culture, ZD-1 had its maximal desulfurization activity in the late exponential growth phase and the specific production rate of 2-HBP was about 0.14(mmol·kg dry cell -1·min -1, mmol·KDC -1·min -1). Active resting cells for desulfurization should be prepared only in this period. 2-HBP inhibited the growth of strain ZD-1, the production of DBT degradation enzymes, and the activity of enzymes. Sulfate inhibited the production of dibenzothiophene(DBT) degradation enzymes but had no effect on the enzymes' activity. The production rates of 2-HBP at lower cell densities were higher and the maximum amount conversion of DBT to 2-HBP(0.067 mmol/L) after 8 h was gained at 9.2 g dry cell/L rather higher cell density. The results indicated that this newly isolated strain could be a promising biocatalyst for DBT desulfurization.展开更多
Rhodococcus erythropolis USTB-03 is a promising bacterial strain for the biodesulfurization of dibenzothiophene (DBT) via a sulfurspecific pathway in which DBT is converted to 2-hydroxybiphenyl (2HBP) as an end pr...Rhodococcus erythropolis USTB-03 is a promising bacterial strain for the biodesulfurization of dibenzothiophene (DBT) via a sulfurspecific pathway in which DBT is converted to 2-hydroxybiphenyl (2HBP) as an end product. The effects of nicotinamide and riboflavin on the sulfur specific activity (SA) of DBT biodesulfurization by R. erythropolis USTB-03 were investigated. Both nicotinamide and riboflavin were found to enhance the expression of SA, which was not previously reported. When R. erythropolis USTB-03 was grown on a medium containing nicotinamide of 10.0 mmol or riboflavin of 50.0 μmol, SA was raised from 68.0 or so to more than 130 mmol 2HBP/(kg dry cells.h). When R. erythropolis USTB-03 was grown in the presence of both nicotinamide of 5.0 mmol and riboflavin of 25.0 μmol, SA was further increased to 159.0 mmol 2HBP/(kg dry cells.h). It is suggested that the biological synthesis of reduced form of flavin mononucleotide (FMNH2), an essential coenzyme for the activities of biodesulfurization enzyme Dsz C and A, might be enhanced by nicotinamide and riboflavin, which was responsible for the increased SA of R. erythropolis USTB-03.展开更多
In this research, the degradation of dibenzothiophene(DBT) was investigated by using Pseudomonas sp. LKY-5 isolated from oil contaminated soil. The response surface methodology(RSM) based on the Box-Behnken design(BBD...In this research, the degradation of dibenzothiophene(DBT) was investigated by using Pseudomonas sp. LKY-5 isolated from oil contaminated soil. The response surface methodology(RSM) based on the Box-Behnken design(BBD) was applied for evaluating the interactive effects of four independent variables including substrate concentration, temperature, pH and agitation rate on the DBT removal response. A total of 29 experiments for four factors at three levels were conducted in present study. A second-order regression model was then developed, and the analysis of variance(ANOVA) illustrated that the proposed quadratic model could be utilized to navigate the design space. The value of determination coefficient(R2=0.953 4) indicated a satisfactory agreement between the quadratic model and the experimental data. It was found that DBT removal was more significantly affected(P<0.000 1) by substrate concentration compared with other three parameters. An 100% degradation of DBT could be obtained by Pseudomonas sp. LKY-5 at a substrate concentration of 100 mg/L.展开更多
Supported ionic liquid(IL) catalysts [Cmim]PMoO/Am TiO(amorphous TiO) were synthesized through a one-step method for extraction coupled catalytic oxidative desulfurization(ECODS) system. Characterizations such as FTIR...Supported ionic liquid(IL) catalysts [Cmim]PMoO/Am TiO(amorphous TiO) were synthesized through a one-step method for extraction coupled catalytic oxidative desulfurization(ECODS) system. Characterizations such as FTIR, DRS,wide-angle XRD, Nadsorption–desorption and XPS were applied to analyze the morphology and Keggin structure of the catalysts. In ECODS with hydrogen peroxide as the oxidant, it was found that ILs with longer alkyl chains in the cationic moiety had a better effect on the removal of dibenzothiophene. The desulfurization could reach 100% under optimal conditions, and GC–MS analysis was employed to detect the oxidized product after the reaction. Factors affecting the desulfurization efficiencies were discussed, and a possible mechanism was proposed. In addition, cyclic experiments were also conducted to investigate the recyclability of the supported catalyst. The catalytic activity of [Cmim]PMoO/Am TiOonly dropped from 100% to 92.9% after ten cycles, demonstrating the good recycling performance of the catalyst and its potential industrial application.展开更多
V2O3 nanoparticles with high surface area have been successfully prepared by a new solvothermal method without using any surfactant and template. The size of V2O3 nanoparticles is mostly equal to 10 nm-30 nm. The high...V2O3 nanoparticles with high surface area have been successfully prepared by a new solvothermal method without using any surfactant and template. The size of V2O3 nanoparticles is mostly equal to 10 nm-30 nm. The highest surface area of obtained V2O3 nanoparticles reaches 49 m2/g. Several kinds of V2O3 catalysts were prepared by different methods. All these V2O3 catalysts obtained thereby showed high catalytic activity for oxidative desulfurization(ODS) reaction by using tert-butyl hydroperoxide as the oxidant. The V2O3 catalyst with a highest ODS activity was obtained under the following conditions: The catalyst was prepared upon using V2O5 as the vanadium source, methanol as the solvent, and oxalic acid as the complexing reagent at a V2O5/oxalic acid molar ratio of 1:2. The process for ODS of dibenzothiophene was carried out under mild conditions(under atmospheric pressure and at a relatively low temperature). The highest ODS activity of the obtained V2O3 nanoparticles can be attributed to their highest surface area.展开更多
Adsorption properties of dibenzothiophene (DBT) on a CNT (carbon nanotube) support as well as on CoMoS/CNT and CoMoO/CNT catalysts have been studied. Consecutive desorption of adsorbates was measured by TGA. The commo...Adsorption properties of dibenzothiophene (DBT) on a CNT (carbon nanotube) support as well as on CoMoS/CNT and CoMoO/CNT catalysts have been studied. Consecutive desorption of adsorbates was measured by TGA. The commonly used carriers AC (activated carbon), γ-Al_2O_3, and their supported catalysts (CoMoO/AC, CoMoS/AC, CoMoO/γ-Al_2O_3, CoMoS/γ-Al_2O_3)were also subjected to analysis for comparison. The acidic properties of the samples were characterized using the NH_3-TPD technique. Correlation between the adsorption of DBT and the acidic properties of the catalysts has been established. It was found that the Co-Mo catalysts in the sulfide state adsorbed much more DBT molecules than the corresponding Co-Mo catalysts in the oxide state. The CoMoS/CNT catalyst exhibited very high HDS activity and selectivity, as compared with the CoMoS/γ-Al)_2O_3 catalysts. Based on the BET data and the high hydrogenolysis/hydrogenation selectivity of the CoMoS/CNT, it was deduced that more than 90% of the DBT molecules adsorbed on the CoMoS/CNT with an end-on mode, and the surface of the CoMoS/CNT catalyst was almost fully covered with DBT molecules. Although the AC support had very high surface area and high loading ability, the AC supported CoMoS catalyst showed lower HDS activity, as compared with the CoMoS/γ-Al_2O_3 catalyst.展开更多
基金supported by the National Natural Science Foundation (Nos. 21407167, 21621064, and 21607168)the Chinese Academy of Sciences (No. XDB14030500)
文摘Homogeneous formation of polychlorinated dibenzothiophenes/thianthrenes(PCDT/TAs),sulfurated compounds analogous to polychlorinated dibenzo-p-dioxin/dibenzofurans(PCDD/Fs), has been well-documented to occur via radical–radical coupling reactions from chlorinated thiophenol precursors. However, the current understanding of the formation mechanism of PCDT/TAs is exclusively limited to the inherent point of view that chlorothiophenoxy radicals act as the only required intermediates for PCDT/TAs. This study investigates reaction pathways for the formation of PCDT/TAs involving two new types of radical species, i.e., substituted phenyl radicals and substituted thiophenoxyl diradicals. Taking 2-chlorothiophenol(2-CTP) as a model compound for chlorothiophenols,we found that apart from the mostly discussed chlorothiophenoxy radicals, substituted phenyl radicals and substituted thiophenoxyl diradicals could also be readily formed via the reaction of 2-CTP with H radicals. Furthermore, direct self-and cross-coupling of these radicals can result in the formation of PCDT/TAs, including 1-monochlorothianthrene(1-MCTA), 1,6-dichlorothianthrene(1,6-DCTA), 4,6-dichlorodibenzothiophene(4,6-DCDT)and 1,6-dichlorodibenzothiophene(1,6-DCDT). The pathways proposed in this work are proven to be both thermodynamically and kinetically favorable. Particularly, comparisons were made between the formation mechanisms of sulfurated and oxygenated dioxin systems from an energetic point view, showing that replacing oxygen with sulfur atoms greatly reduces the activation barriers of the rate-controlling steps involved in the PCDT/TA formation processes compared with those involved for PCDD/Fs. The calculated results in this work may improve our understanding of the formation mechanism of PCDT/TAs from chlorothiophenol precursors and should be informative to environmental scientists.
基金funded by the National Natural Science Foundation of China (Grant No. 41272158)the State Key Laboratory of Petroleum Resources and Prospecting (PRP/indep-2-1302)
文摘Aromatic fractions of 140 oils and condensates that originated from different types of source rocks (marine shale,terrestrial shale and marine carbonate) were analyzed using gas chromatographymass spectrometry (GC-MS) to investigate the relative distributions of methylated dibenzothiophenes with respect to thermal maturity.The positions of methyl groups of trimethyldibenzothiophene isomers (TMDBTs) including those used in the definition of maturity indicator TMDBT index in previous studies were firmly identified by co-elution of internal standards in GC-MS analysis and by comparing with reported retention indices.A new maturity ratio related to dimethyldibenzothiophenes (DMDBTs) is proposed on the basis of the differences in thermodynamic stability among different DMDBT isomers.Another maturity index (TMDBT-I2) based on TMDBTs is also suggested on the basis of our empirical observations and presumed thermodynamic stability of TMDBT isomers.These two newly proposed (2,6 + 3,6)-/1,4-DMDBT ratio and TMDBT-I2 correlate well with MDR (4-/1-methyldibenzothiophene)and 2,4-/1,4-DMDBT ratios,suggesting their common chemical reaction mechanisms and similar behavior with increasing maturity.Therefore,they can be effectively applied for maturity assessments.Furthermore,the TMDBTs related maturity parameters are more reliable for over-mature oils and condensates due to the relatively higher concentrations of thermodynamically unstable TMDBT isomers,i.e.1,4,6-,1,4,8-and 3,4,6-TMDBT in this study than those of 1-methyldibenzothiophene (1-MDBT) or 1,4-DMDBT.In contrast with 4,6-/1,4-DMDBT,the newly proposed (2,6 + 3,6)-/1,4-DMDBT ratios for oils that originated from different types of source rocks have approximately same relationship with the oil maturity (Rc %).This suggests that the lithology and organic facies may have relatively less influence on (2,6 + 3,6)-/1,4-DMDBT ratio compared to 4,6-/1,4-DMDBT.The maturity parameters based on methylated dibenzothiophenes are particularly useful in the maturity assessments of post-and over-mature oils and condensates and can complement maturity indicators based on steranes and terpanes.
基金the National Natural Science Foundation of China(No.20737001 and 20477018)
文摘The structural and thermodynamic (PCTAs) in the ideal gas state at 298.15 K and 1.013 properties of 75 polychlorinated thianthrenes ×10^5 Pa have been calculated at the B3LYP/6- 31G* level using Gaussian 98 program. Based on the output data of Gaussian, the isodesmic reactions were designed to calculate standard enthalpy of formation (△fH^θ) and standard free energy of formation (△fH^θ) of PCTAs congeners. The relations of these thermodynamic parameters with the number and position of C1 atom substitution (Npcs) were discussed, and it was found that there exists high correlation between thermodynamic parameters (total energy (TE), zero-point vibrational energy (ZPE), thermal correction to energy (Eth), heat capacity at constant volume (Cv^θ), entropy (S^θ), enthalpy (H^θ), free energy (G^θ), standard enthalpies of formation (△fH^θ) and standard Gibbs energies of formation (△fG^θ)) and Npcs. On the basis of the relative magnitude of their △fG^θ, the order of relative stability of PCTA congeners was theoretically proposed. In addition, the correlations between structural parameters and Npcs were also discussed. The good correlations were found between molecular average polarizability (α), energy of the highest occupied molecular orbital (EHOMO), molecular volume (Vm) and Npcs, and all R^2 values are larger than 0.95. Moreover, it was supposed that the isomer groups with higher toxicity should be Tri-CTA and TCTA.
基金Supported by the National Natural Science Foundation of China (20737001).
文摘The thermodynamic properties of 135 polybrominated dibenzothiophenes (PBDTs) in the gaseous state at 298.15 K and 1.013×10^5 Pa, are calculated using the density functional theory (the B3LYP/6-311G^**) with Gaussian 03. Based on these data, the isodesmic reacflons are designed to calculate the standard enthalpy of formation (△fH^θ) and the standard Gibbs energy of formation (△fG^θ) of PBDTs. The relations of these thermodynamic parameters with the number and positionof bromine subsfituents (NPBS) are discussed, and it is found that there exist good correlations between othermody namic parameters (including heat capacity at constant volume, entropy, enthaipy, free energy, △fH^θ, △fG^θ) and NPBS. Thoe relative stability order of PBDT congeners is proposed theoretically based on the relative magnitude of their △fG^θ. In addition, the values of molar heat capacities at constant pressure (Cp,m) for PBDT c ongelaers are calculated.
基金supported by the Science and Technology Project of Zhejiang Province(2016C33039)the Public Technology Research Project(Analysis and Measurement)of Zhejiang Province(LGC19B070004)+1 种基金State Key Laboratory of Environmental Chemistry and Ecotoxicology,Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences(KF2018-15)Natural Science Foundation of Zhejiang Province(LY18C030003)
文摘Polychlorinated dibenzothiophenes(PCDTs)and their corresponding sulfone(PCDTO2)compounds are a group of important persistent organic pollutants.In the present study,geometrical optimization and subsequent calculations of electrostatic potentials(ESPs)on molecular surface have been performed for all 135 PCDTs and 135 PCDTO2 congeners at the HF/6-31G*level of theory.A number of statistically-based parameters have been extracted.Linear relationship between gas-chromatographic retention index(RI)and the structural descriptors have been established by multiple linear regression.The result shows that two descriptors derived from positive electrostatic potential on molecular surface, ■ and π,together with the molecular volume(Vmc)and the energy of the lowest unoccupied molecular orbital(ELUMO)can be well used to express the quantitative structure-retention relationship(QSRR)of PCDTs and PCDTO2.Predictive capability of the two models has been demonstrated by leave-one-out cross-validation with the cross-validated correlation coefficient(RCV)of 0.996 and 0.997,respectively.Furthermore,the predictive power of the models is further examined for the external test set.Correlation coefficients(R)between the observed and predicted RI values for the external test set are 0.997 and0.998,respectively,validating the robustness and good prediction of our model.The QSRR model established may provide again a powerful method for predicting chromatographic properties of aromatic organosulfur compounds.
基金financially supported by the National Natural Science Foundation of China(Nos.40772091 and 41172136)
文摘Variations in the distributions of carbazoles and dibenzothiophenes were investigated in a set of source rocks, which differ mainly in their maturity levels during immature-mature stages. A comparison of the distributions of carbazoles and dibenzothiophenes has revealed the main results as follows: variations in the relative amounts ①of C0-, C1-, C2-dibenzothiophenes show a low correlation with that of the corresponding carbazoles, with the former's being much higher than the latter's; variations in the relative amounts of methyldibe② nzothiophene isomers also display a low correlation with that of the corresponding methylcarbazoles, with 4-/4- +1-methyldibenzothiophene ratio ranging from 0.52 to 0.96, while the corresponding carbazole ratio of 1-/1- +4-methylcarbazole only being 0.71±0.05; the mat③ urity parameter for 4,6-/4,6- +1,4-dimethyldibenzothiohene, ranging from 0.34 to 0.75, shows a remarkable linear correlation with the corresponding ratio of 1,8-/1,8- +1,4-dimethylcarbazole(R2>0.84). The un-correlation may indicate some different geological-geochemical fates for some isomers of dibenzothiophenes and carbazoles. The high correlation may reveal a strong maturation dependence on the dimethylcarbazole distributions, indicating that attention should be paid when 1,8-/1,8- +1,4-dimethylcarbazole is used as a petroleum migration indicator.
基金This research was supported by the Science Foundation of China University of Petroleum-Beijing(No.2462023QNXZ002)the National Key R&D Program of China(2021YFA1501201)+2 种基金the National Natural Science Foundation of China(No.22278174)Independent research project of State Key Laboratory of heavy oil(2021–01)Shandong Excellent Young Scientists Fund Program(Overseas,2022HWYQ-082).
文摘A novel composite material(TD)composed of TS-1 microcrystalline and dendritic mesoporous silica nanospheres(DMSNs)was successfully prepared.The TD composite material had open pore structure and large specific surface area,which was conducive to the mass transfer of reactants and products.The Ti element in TS-1 could be used as an electron assistant,and the spillover d-electrons were conducive to the improvement of the sulfidation and dispersion of MoS_(2),thereby forming more type II MoS_(2) active phases.The incorporation of Ti could bring more Brønsted(B)and Lewis(L)acid,which was conducive to the hydrogenation pathway(HYD)selectivity(41.2%)of dibenzothiophene(DBT)hydrodesulfurization(HDS)and isomerization(ISO)route selectivity(21.9%)of 4,6-dimethyldibenzothiophene(4,6-DMDBT)HDS,thus improve the HDS activity of DBT and 4,6-DMDBT.NiMo/TD-70(Aging temperature=70℃)had the best HDS activities of DBT(99.0%)and 4,6-DMDBT(93.7%)due to its large open pore structure,good acidity,suitable metal-support interaction(MSI)and perfect dispersion of the metallic active sites.
基金financially supported by the National Natural Science Foundation of China (NNSFC,21206017)~~
文摘Micro-mesoporous ZK-1 molecular sieves with different Si/Al ratios were used as supports for binary Co-Mo hydrodesulfurization(HDS) catalysts.The CoMo/ZK-1 catalysts were prepared using an over-loading impregnation method,and characterized using N2 physisorption,X-ray diffraction,temperature-programmed NH3 desorption,temperature-programmed reduction(TPR),ultraviolet-visible diffuse reflectance spectroscopy,and high-resolution transmission electron microscopy(HRTEM).The results show that the CoMo/ZK-1 catalysts have high surface areas(~700 m^2/g),large pore volumes,and hierarchical porous structures,which promote the dispersion of Co and Mo oxide phases on the ZK-1 supports.The TPR results show that the interactions between the Co and Mo oxide phases and the ZK-1 support are weaker than those in the CoMo/γ-Al2O3 catalyst.The HRTEM results show that the CoMo/ZK-1 catalysts have better MoS2 dispersion and more active edge sites.The catalysts were tested in HDS of dibenzothiophene.Under mild reaction conditions,the activity of Co and Mo sulfides supported on ZK-1 was higher than those of Co and Mo sulfides supported on ZSM-5,A1KIT-1,and γ-Al2O3.
基金financial support from the National Natural Science Foundation of China(22178154,22008094,21908082,21878133)Natural Science Foundation of Jiangsu Province(BK20190852,BK20190854)Natural Science Foundation for Jiangsu Colleges and Universities(19KJB530005).
文摘A few-layered hexagonal boron nitride nanosheets stabilized platinum nanoparticles(Pt/h-BNNS)is engineered for oxidation-promoted adsorptive desulfurization(OPADS)of fuel oil.It was found that the few-layered structure and the defective sites of h-BNNS not only are beneficial to the stabilization of Pt NPs but also favor the adsorption of aromatic sulfides.By employing Pt/h-BNNS with a Pt loading amount of 1.19 wt%as the active adsorbent and air as an oxidant,a 98.0%sulfur removal over dibenzothiophene(DBT)is achieved along with a total conversion of the DBT to the corresponding sulfones(DBTO_(2)).Detailed experiments show that the excellent desulfurization activity originates from the few-layered structure of h-BNNS and the high catalytic activity of Pt NPs.In addition,the OPADS system with Pt/h-BNNS as the active adsorbent shows remarkable stability in desulfurization performance with the existence of different interferents such as olefin,and aromatic hydrocarbons.Besides,the Pt/h-BNNS can be recycled 12 times without a significant decrease in desulfurization performance.Also,a process flow diagram is proposed for deep desulfurization of fuel oil and recovery of high value-added products,which would promote the industrial application of such OPADS strategy.
基金financially supported by the Program for Liaoning Excellent Talents in University,abbreviated as“LNET”(LJQ2015062)Program for Science and Technology Agency of Liaoning Province(20170540585)+1 种基金General Scientific Research Project of Liaoning Provincial Department of Education(L2015296,L2016018)Science and Technology Planning project of Fushun(FSKJHT201376)
文摘By using the bimodal mesoporous silica(BMMS) as the carrier and butyl titanate as the titanium source, the TiO_2/BMMS catalyst was prepared. The samples were characterized by XRD, XRF, N_2 adsorption and desorption, FTIR, UVvis,SEM, EDS, and TEM techniques. The test results showed that TiO_2 was amorphous, the TiO_2/BMMS catalyst had an ordered bimodal mesoporous structure, and the chemical interaction existed between BMMS and TiO_2. Since the TiO_2/BMMS had a lower band gap, its photocatalytic activity was better than TiO_2. Under UV irradiation a one-pot PODS system was set up, using TiO_2/BMMS as the catalyst, H_2O_2 as the oxidant, and methanol as the solvent. The TiO_2/BMMS catalyst showed better photocatalytic activity than the mono-modal mesoporous TiO_2/SBA-15 catalyst, and the desulfurization rate of dibenzothiophene(DBT) over TiO_2/BMMS catalyst could reach 99._2%. The TiO_2/BMMS catalyst also had so good stability that the desulfurization rate of DBT did not drop apparently after 8 cycles of reusing, and could still be close to 90%.
文摘Sulfur emission through fuel combustion is a global problem because it is a major cause of acid rain. Crud oil contains many heterocyclic organic sulfur compounds, among which dibenzothiophene(DBT) and DBTs bearing alkyl substitutions usually are representative compounds. A strain was isolated from refinery sludge and identified as Corynebacterium ZD-1. The behavior of DBT degradation by ZD-1 in aqueous phase was investigated. Corynebacterium ZD-1 could metabolize DBT to 2-hydroxybiphenyl(2-HBP) as the dead-end metabolite through a sulfur-specific pathway. In shake flask culture, ZD-1 had its maximal desulfurization activity in the late exponential growth phase and the specific production rate of 2-HBP was about 0.14(mmol·kg dry cell -1·min -1, mmol·KDC -1·min -1). Active resting cells for desulfurization should be prepared only in this period. 2-HBP inhibited the growth of strain ZD-1, the production of DBT degradation enzymes, and the activity of enzymes. Sulfate inhibited the production of dibenzothiophene(DBT) degradation enzymes but had no effect on the enzymes' activity. The production rates of 2-HBP at lower cell densities were higher and the maximum amount conversion of DBT to 2-HBP(0.067 mmol/L) after 8 h was gained at 9.2 g dry cell/L rather higher cell density. The results indicated that this newly isolated strain could be a promising biocatalyst for DBT desulfurization.
文摘Rhodococcus erythropolis USTB-03 is a promising bacterial strain for the biodesulfurization of dibenzothiophene (DBT) via a sulfurspecific pathway in which DBT is converted to 2-hydroxybiphenyl (2HBP) as an end product. The effects of nicotinamide and riboflavin on the sulfur specific activity (SA) of DBT biodesulfurization by R. erythropolis USTB-03 were investigated. Both nicotinamide and riboflavin were found to enhance the expression of SA, which was not previously reported. When R. erythropolis USTB-03 was grown on a medium containing nicotinamide of 10.0 mmol or riboflavin of 50.0 μmol, SA was raised from 68.0 or so to more than 130 mmol 2HBP/(kg dry cells.h). When R. erythropolis USTB-03 was grown in the presence of both nicotinamide of 5.0 mmol and riboflavin of 25.0 μmol, SA was further increased to 159.0 mmol 2HBP/(kg dry cells.h). It is suggested that the biological synthesis of reduced form of flavin mononucleotide (FMNH2), an essential coenzyme for the activities of biodesulfurization enzyme Dsz C and A, might be enhanced by nicotinamide and riboflavin, which was responsible for the increased SA of R. erythropolis USTB-03.
基金support provided by the Fundamental Research Funds for the Central Universities (No. 12CX06043A) of Chinathe Key Laboratory of Marine Spill Oil Identification and Damage Assessment Technology,SOA(No. 201407)
文摘In this research, the degradation of dibenzothiophene(DBT) was investigated by using Pseudomonas sp. LKY-5 isolated from oil contaminated soil. The response surface methodology(RSM) based on the Box-Behnken design(BBD) was applied for evaluating the interactive effects of four independent variables including substrate concentration, temperature, pH and agitation rate on the DBT removal response. A total of 29 experiments for four factors at three levels were conducted in present study. A second-order regression model was then developed, and the analysis of variance(ANOVA) illustrated that the proposed quadratic model could be utilized to navigate the design space. The value of determination coefficient(R2=0.953 4) indicated a satisfactory agreement between the quadratic model and the experimental data. It was found that DBT removal was more significantly affected(P<0.000 1) by substrate concentration compared with other three parameters. An 100% degradation of DBT could be obtained by Pseudomonas sp. LKY-5 at a substrate concentration of 100 mg/L.
基金financially supported by the National Natural Science Foundation of China (Nos. 21576122, 21646001, 21506080)Natural Science Foundation of Jiangsu Province (Nos. BK20150485, BK20170528)+2 种基金China Postdoctoral Science Foundation (2017M611727)Jiangsu Planned Projects for Postdoctoral Research Funds (1701104B)supported by the Student Innovation and Entrepreneurship Training Program (201810299332 W)
文摘Supported ionic liquid(IL) catalysts [Cmim]PMoO/Am TiO(amorphous TiO) were synthesized through a one-step method for extraction coupled catalytic oxidative desulfurization(ECODS) system. Characterizations such as FTIR, DRS,wide-angle XRD, Nadsorption–desorption and XPS were applied to analyze the morphology and Keggin structure of the catalysts. In ECODS with hydrogen peroxide as the oxidant, it was found that ILs with longer alkyl chains in the cationic moiety had a better effect on the removal of dibenzothiophene. The desulfurization could reach 100% under optimal conditions, and GC–MS analysis was employed to detect the oxidized product after the reaction. Factors affecting the desulfurization efficiencies were discussed, and a possible mechanism was proposed. In addition, cyclic experiments were also conducted to investigate the recyclability of the supported catalyst. The catalytic activity of [Cmim]PMoO/Am TiOonly dropped from 100% to 92.9% after ten cycles, demonstrating the good recycling performance of the catalyst and its potential industrial application.
基金supported by the National Nature Science Foundation of China (21303088)
文摘V2O3 nanoparticles with high surface area have been successfully prepared by a new solvothermal method without using any surfactant and template. The size of V2O3 nanoparticles is mostly equal to 10 nm-30 nm. The highest surface area of obtained V2O3 nanoparticles reaches 49 m2/g. Several kinds of V2O3 catalysts were prepared by different methods. All these V2O3 catalysts obtained thereby showed high catalytic activity for oxidative desulfurization(ODS) reaction by using tert-butyl hydroperoxide as the oxidant. The V2O3 catalyst with a highest ODS activity was obtained under the following conditions: The catalyst was prepared upon using V2O5 as the vanadium source, methanol as the solvent, and oxalic acid as the complexing reagent at a V2O5/oxalic acid molar ratio of 1:2. The process for ODS of dibenzothiophene was carried out under mild conditions(under atmospheric pressure and at a relatively low temperature). The highest ODS activity of the obtained V2O3 nanoparticles can be attributed to their highest surface area.
文摘Adsorption properties of dibenzothiophene (DBT) on a CNT (carbon nanotube) support as well as on CoMoS/CNT and CoMoO/CNT catalysts have been studied. Consecutive desorption of adsorbates was measured by TGA. The commonly used carriers AC (activated carbon), γ-Al_2O_3, and their supported catalysts (CoMoO/AC, CoMoS/AC, CoMoO/γ-Al_2O_3, CoMoS/γ-Al_2O_3)were also subjected to analysis for comparison. The acidic properties of the samples were characterized using the NH_3-TPD technique. Correlation between the adsorption of DBT and the acidic properties of the catalysts has been established. It was found that the Co-Mo catalysts in the sulfide state adsorbed much more DBT molecules than the corresponding Co-Mo catalysts in the oxide state. The CoMoS/CNT catalyst exhibited very high HDS activity and selectivity, as compared with the CoMoS/γ-Al)_2O_3 catalysts. Based on the BET data and the high hydrogenolysis/hydrogenation selectivity of the CoMoS/CNT, it was deduced that more than 90% of the DBT molecules adsorbed on the CoMoS/CNT with an end-on mode, and the surface of the CoMoS/CNT catalyst was almost fully covered with DBT molecules. Although the AC support had very high surface area and high loading ability, the AC supported CoMoS catalyst showed lower HDS activity, as compared with the CoMoS/γ-Al_2O_3 catalyst.