Objective:To determine the inhibitory effects of pachymic acid on lung adenocarcinoma(LUAD)cells and elucidate its underlying mechanism.Methods:CCK-8,wound healing,Transwell,Western blot,tube formation,and immunofluor...Objective:To determine the inhibitory effects of pachymic acid on lung adenocarcinoma(LUAD)cells and elucidate its underlying mechanism.Methods:CCK-8,wound healing,Transwell,Western blot,tube formation,and immunofluorescence assays were carried out to measure the effects of various concentrations of pachymic acid on LUAD cell proliferation,metastasis,angiogenesis as well as autophagy.Subsequently,molecular docking technology was used to detect the potential targeted binding association between pachymic acid and protein tyrosine phosphatase 1B(PTP1B).Moreover,PTP1B was overexpressed in A549 cells to detect the specific mechanisms of pachymic acid.Results:Pachymic acid suppressed LUAD cell viability,metastasis as well as angiogenesis while inducing cell autophagy.It also targeted PTP1B and lowered PTP1B expression.However,PTP1B overexpression reversed the effects of pachymic acid on metastasis,angiogenesis,and autophagy as well as the expression of Wnt3a andβ-catenin in LUAD cells.Conclusions:Pachymic acid inhibits metastasis and angiogenesis,and promotes autophagy in LUAD cells by modulating the Wnt/β-catenin signaling pathway via targeting PTP1B.展开更多
BACKGROUND Diabetic macular edema(DME)is the most common cause of vision loss in people with diabetes.Tight junction disruption of the retinal pigment epithelium(RPE)cells has been reported to induce DME development.S...BACKGROUND Diabetic macular edema(DME)is the most common cause of vision loss in people with diabetes.Tight junction disruption of the retinal pigment epithelium(RPE)cells has been reported to induce DME development.SMAD-specific E3 ubiquitin protein ligase(SMURF)1 was associated with the tight junctions of cells.However,the mechanism of SMURF1 in the DME process remains unclear.AIM To investigate the role of SMURF1 in RPE cell tight junction during DME.METHODS ARPE-19 cells treated with high glucose(HG)and desferrioxamine mesylate(DFX)for establishment of the DME cell model.DME mice models were constructed by streptozotocin induction.The trans-epithelial electrical resistance and permeability of RPE cells were analyzed.The expressions of tight junction-related and autophagy-related proteins were determined.The interaction between insulin like growth factor 2 mRNA binding protein 2(IGF2BP2)and SMURF1 mRNA was verified by RNA immunoprecipitation(RIP).SMURF1 N6-methyladenosine(m6A)level was detected by methylated RIP.RESULTS SMURF1 and vascular endothelial growth factor(VEGF)were upregulated in DME.SMURF1 knockdown reduced HG/DFX-induced autophagy,which protected RPE cell tight junctions and ameliorated retinal damage in DME mice.SMURF1 activated the Wnt/β-catenin-VEGF signaling pathway by promoting WNT inhibitory factor(WIF)1 ubiquitination and degradation.IGF2BP2 upregulated SMURF1 expression in an m6A modification-dependent manner.CONCLUSION M6A-modified SMURF1 promoted WIF1 ubiquitination and degradation,which activated autophagy to inhibit RPE cell tight junctions,ultimately promoting DME progression.展开更多
Wnt1-inducible signaling pathway protein-1(WISP1),a member of the CCN family,is increasingly being recognized as a potential target for obesity and type 2 diabetes mellitus.Recent studies have shown that WISP1 can reg...Wnt1-inducible signaling pathway protein-1(WISP1),a member of the CCN family,is increasingly being recognized as a potential target for obesity and type 2 diabetes mellitus.Recent studies have shown that WISP1 can regulate low-grade inflammation in obese mice,and circulating WISP1 levels are associated with obesity and type 2 diabetes mellitus in adults.Herein,we measured serum WISP1 levels in obese youth and explored its relationships with pro-inflammatory cytokine interleukin 18(IL-18)and other metabolic indexes.Totally,44 normal-weight and 44 obese children and adolescents were enrolled.Physical and laboratory data were recorded,and then serum levels of WISP1 and IL-18 were determined by enzyme-linked immunosorbent assays.Results showed that serum levels of WISP1 were significantly higher in obese children and adolescents than in normal-weight healthy controls (1735.444-15.29 vs. 1364.084-18.69 pg/mL).WISP1 levels were significantly positively correlated with body mass index (BMI)and BMI z-score (r=0.392,P=0.008;r=0.474,P=0.001,respectively) in obese group;circulating IL-18 was increased in obese individuals (1229.064-29.42 vs. 295.874-13.30 pg/mL).Circulating WISP1 levels were significantly correlated with IL-18 (r=0.542,P<0.001),adiponectin (r=0.585,P<0.001)and leptin (r=0.592,P<0.001).The multivariate stepwise regression analysis showed that higher IL-18 levels represented the main determinant of increased WISP1 levels after adjusting for BMI,waist circumference, fasting insulin,homeostatic model assessment of insulin resistance (HOMA-IR)and HbAlc in obese individuals (β=0.542,P=0.000).WISP1 can be involved in glucose/lipid metabolism in obese youth,which may be modulated by IL-18.Increased WISP1 levels may be a risk factor of obesity and insulin resistance,and WISP1 has a potential therapeutic effect on insulin resistance in obese children and adolescents.展开更多
AIM: To explore the contribution of AXIN1, AXIN2 and beta-catenin, components of Wnt signaling pathway, to the carcinogenesis of gastric cancer (GC), we examined AXIN1, AXIN2 exon7 and CTNNB1 (encoding beta- catenin) ...AIM: To explore the contribution of AXIN1, AXIN2 and beta-catenin, components of Wnt signaling pathway, to the carcinogenesis of gastric cancer (GC), we examined AXIN1, AXIN2 exon7 and CTNNB1 (encoding beta- catenin) exon3 mutations in 70 GCs. METHODS: The presence of mutations was identified by polymerase chain reaction (PCR)-based denaturing high-performance liquid chromatography and direct DNA sequencing. Beta-catenin expression was detected by immunohistochemical analysis. RESULTS: Among the 70 GCs, 5 (7.1%) had mutations in one or two of these three components. A frameshift mutation (1 bp deletion) in exon7 of AXIN2 was found in one case. Four cases, including the case with a mutation in AXIN2, had frameshift mutations and missense mutations in AXIN1. Five single nucleotide polymorphisms (SNPs), 334 C>T, 874 C>T, 1396 G>A, 1690 C>T and 1942 T>G, were identified in AXIN1. A frameshift mutation (27 bp deletion) spanning exon3 of CTNNB1 was observed in one case. All four cases with mutations in AXIN1 and AXIN2 showed nuclear beta- catenin expression. CONCLUSION: These data indicate that the mutationsin AXIN1 and AXIN2 may contribute to gastric carcino- genesis.展开更多
We investigated the role of the Wnt signaling pathway in cerebral ischemia/reperfusion injury by examining β-catenin and glycogen synthase kinase-3β protein expression in the rat hippocampal CA1 region following acu...We investigated the role of the Wnt signaling pathway in cerebral ischemia/reperfusion injury by examining β-catenin and glycogen synthase kinase-3β protein expression in the rat hippocampal CA1 region following acute cerebral ischemia/reperfusion. Our results demonstrate that cell apoptosis increases in the CA1 region following ischemia/reperfusion. In addition, β-catenin and glycogen synthase kinase-3β protein expression gradually increases, peaking at 48 hours following reperfusion. Dickkopf-1 administration, after cerebral ischemia/reperfusion injury, results in decreased cell apoptosis, and β-catenin and glycogen synthase kinase-3β expression, in the CA1 region. This suggests that β-catenin and glycogen synthase kinase-3β, both components of the Wnt signaling pathway, participate in cell apoptosis following cerebral ischemia/reperfusion injury.展开更多
Objective While the upregulation of cytochrome P450 family 24 subfamily A member 1(CYP24A1)gene expression has been reported in colon cancer,its role in tumorigenesis remains largely unknown.In this study,we aimed to ...Objective While the upregulation of cytochrome P450 family 24 subfamily A member 1(CYP24A1)gene expression has been reported in colon cancer,its role in tumorigenesis remains largely unknown.In this study,we aimed to investigate the involvement of CYP24A1 in Wnt pathway regulation via the nuclear factor kappa B(NF-κB)pathway.Methods The human colon cancer cell lines HCT-116 and Caco-2 were subjected to stimulation with interleukin-6(IL-6)as well as tumor necrosis factor alpha(TNF-α),with subsequent treatment using the NF-κB pathway-specific inhibitor ammonium pyrrolidinedithiocarbamate(PDTC).Furthermore,CYP24A1 expression was subjected to knockdown via the use of small interfering RNA(siRNA).Subsequently,NF-κB pathway activation was determined by an electrophoretic mobility shift assay,and the transcriptional activity ofβ-catenin was determined by a dual-luciferase reporter assay.A mouse ulcerative colitis(UC)-associated carcinogenesis model was established,wherein TNF-αand the NF-κB pathway were blocked by anti-TNF-αmonoclonal antibody and NF-κB antisense oligonucleotides,respectively.Then the tumor size and protein level of CYP24A1 were determined.Results IL-6 and TNF-αupregulated CYP24A1 expression and activated the NF-κB pathway in colon cancer cells.PDTC significantly inhibited this increase in CYP24A1 expression.Additionally,knockdown of CYP24A1 expression by siRNA could partially antagonize Wnt pathway activation.Upregulated CYP24A1 expression was observed in the colonic epithelial cells of UC-associated carcinoma mouse models.Anti-TNF-αmonoclonal antibody and NF-κB antisense oligonucleotides decreased the tumor size and suppressed CYP24A1 expression.Conclusion Taken together,this study suggests that inflammatory factors may increase CYP24A1 expression via NF-κB pathway activation,which in turn stimulates Wnt signaling.展开更多
Chemotherapy may cause cellular oxidative stress to bone marrow.Oxidative damage of bone marrow hematopoietic microenvironment is closely related to chronic myelosuppression after chemotherapeutic treatment.Angelica s...Chemotherapy may cause cellular oxidative stress to bone marrow.Oxidative damage of bone marrow hematopoietic microenvironment is closely related to chronic myelosuppression after chemotherapeutic treatment.Angelica sinensis polysaccharides(ASP)are major effective ingredients of traditional Chinese medicine Angelica with multi-target anti-oxidative stress features.In the current study,we investigated the protective roles and mechanisms of ASP on chemotherapy-induced bone marrow stromal cell(BMSC)damage.The human bone marrow stromal cell line HS-5 cells were divided into control group,5-FU group,5-FU+ASP group,and 5-FU+LiCl group to investigate the mechanism of ASP to alleviate 5-FU-induced BMSC proliferation inhibition.The results showed that 5-FU inhibits the growth of HS-5 cells in a time and dose-dependent manner;however,ASP partially counteracted the 5-FU-induced decrease in cell viability,whereas Wnt signaling inhibitor Dkk1 antagonized the effect of ASP on HS-5 cells.ASP reversed the decrease in total cytoplasmicβ-catenin,p-GSK-3β,and CyclinD1 following 5-FU treatment and modulated nuclear expression ofβ-catenin,Lef-1,and C-myc proteins.Furthermore,ASP also enhanced the antioxidant capacity of cells and reduced 5-FU-induced oxidative stress,attenuated FoxO1 expression,thus weakened its downstream apoptosis-related proteins and G0/G1 checkpoint-associated p27^(Kip1) expression to alleviate 5-FU-induced apoptosis and to promote cell cycle progression.All the results above suggest that the protective role of ASP in 5-FU-treated BMSCs proliferation for the chemotherapy may be related to its activating Wnt/β-catenin signaling and keeping homeostasis betweenβ-catenin and FoxO1 under oxidative stress.The study provides a potential therapeutic strategy for alleviating chemotherapeutic damage on BMSCs.展开更多
Objective: To investigate the effect of Tip60 gene silencing on the ABCE1 acetylation level and cell proliferation, migration and invasion in TE-1 cells of oesophageal cancer. Methods: The siRNA sequence of Tip60 was ...Objective: To investigate the effect of Tip60 gene silencing on the ABCE1 acetylation level and cell proliferation, migration and invasion in TE-1 cells of oesophageal cancer. Methods: The siRNA sequence of Tip60 was transfected with esophageal cancer TE-1 cells. Transfected siRNA vector cells were used as experimental group (si-T), siRNA no-loaded somatic cells were transfected as control group (si-NC), and untransfected TE-1 cells were used as blank group (Group N). ABCE1 mRNA was detected by qRT-PCR, the expression of ABCE1 protein, proliferation-related protein β catenin (β-catenin), GSK3β, and c-myc by Western blot, the protein acetylation level by immunoprecipitation, MTT assay for cell viability, scratch healing and Transwell compartment assay for migration and invasion ability. Results: After 48 h downregulation of the Tip60 gene, TE-1 cells showed no significant changes in the ABCE1 mRNA and protein expression. The acetylation level of ABCE1 decreased significantly, compared with the control group and the blank group. After Tip60 gene silencing, the expression of β-catenin and c-myc protein decreased, while the expression of GSK-3β protein increased. Cytofunctology experiments showed that the proliferative activity, migration and invasion ability of TE-1 cells in the experimental group were significantly inhibited. Conclusion: Down regulation of Tip60 gene can deacetylate ABCE1 protein and inhibit the proliferation activity, migration and invasion ability of esophageal cancer by blocking the conduction of Wnt signaling pathway.展开更多
基金supported by the Zhejiang Province Traditional Chinese Medicine Health Science and Technology Program(2023ZL570).
文摘Objective:To determine the inhibitory effects of pachymic acid on lung adenocarcinoma(LUAD)cells and elucidate its underlying mechanism.Methods:CCK-8,wound healing,Transwell,Western blot,tube formation,and immunofluorescence assays were carried out to measure the effects of various concentrations of pachymic acid on LUAD cell proliferation,metastasis,angiogenesis as well as autophagy.Subsequently,molecular docking technology was used to detect the potential targeted binding association between pachymic acid and protein tyrosine phosphatase 1B(PTP1B).Moreover,PTP1B was overexpressed in A549 cells to detect the specific mechanisms of pachymic acid.Results:Pachymic acid suppressed LUAD cell viability,metastasis as well as angiogenesis while inducing cell autophagy.It also targeted PTP1B and lowered PTP1B expression.However,PTP1B overexpression reversed the effects of pachymic acid on metastasis,angiogenesis,and autophagy as well as the expression of Wnt3a andβ-catenin in LUAD cells.Conclusions:Pachymic acid inhibits metastasis and angiogenesis,and promotes autophagy in LUAD cells by modulating the Wnt/β-catenin signaling pathway via targeting PTP1B.
基金Supported by Natural Science Foundation of Guangdong Province,No.2022A1515012346.
文摘BACKGROUND Diabetic macular edema(DME)is the most common cause of vision loss in people with diabetes.Tight junction disruption of the retinal pigment epithelium(RPE)cells has been reported to induce DME development.SMAD-specific E3 ubiquitin protein ligase(SMURF)1 was associated with the tight junctions of cells.However,the mechanism of SMURF1 in the DME process remains unclear.AIM To investigate the role of SMURF1 in RPE cell tight junction during DME.METHODS ARPE-19 cells treated with high glucose(HG)and desferrioxamine mesylate(DFX)for establishment of the DME cell model.DME mice models were constructed by streptozotocin induction.The trans-epithelial electrical resistance and permeability of RPE cells were analyzed.The expressions of tight junction-related and autophagy-related proteins were determined.The interaction between insulin like growth factor 2 mRNA binding protein 2(IGF2BP2)and SMURF1 mRNA was verified by RNA immunoprecipitation(RIP).SMURF1 N6-methyladenosine(m6A)level was detected by methylated RIP.RESULTS SMURF1 and vascular endothelial growth factor(VEGF)were upregulated in DME.SMURF1 knockdown reduced HG/DFX-induced autophagy,which protected RPE cell tight junctions and ameliorated retinal damage in DME mice.SMURF1 activated the Wnt/β-catenin-VEGF signaling pathway by promoting WNT inhibitory factor(WIF)1 ubiquitination and degradation.IGF2BP2 upregulated SMURF1 expression in an m6A modification-dependent manner.CONCLUSION M6A-modified SMURF1 promoted WIF1 ubiquitination and degradation,which activated autophagy to inhibit RPE cell tight junctions,ultimately promoting DME progression.
基金This study was supported by the National Natural Science Foundation of China (No.81670781)and program for Changjiang Scholars and Innovative Research Team in University (No.PCSIRT 1131).
文摘Wnt1-inducible signaling pathway protein-1(WISP1),a member of the CCN family,is increasingly being recognized as a potential target for obesity and type 2 diabetes mellitus.Recent studies have shown that WISP1 can regulate low-grade inflammation in obese mice,and circulating WISP1 levels are associated with obesity and type 2 diabetes mellitus in adults.Herein,we measured serum WISP1 levels in obese youth and explored its relationships with pro-inflammatory cytokine interleukin 18(IL-18)and other metabolic indexes.Totally,44 normal-weight and 44 obese children and adolescents were enrolled.Physical and laboratory data were recorded,and then serum levels of WISP1 and IL-18 were determined by enzyme-linked immunosorbent assays.Results showed that serum levels of WISP1 were significantly higher in obese children and adolescents than in normal-weight healthy controls (1735.444-15.29 vs. 1364.084-18.69 pg/mL).WISP1 levels were significantly positively correlated with body mass index (BMI)and BMI z-score (r=0.392,P=0.008;r=0.474,P=0.001,respectively) in obese group;circulating IL-18 was increased in obese individuals (1229.064-29.42 vs. 295.874-13.30 pg/mL).Circulating WISP1 levels were significantly correlated with IL-18 (r=0.542,P<0.001),adiponectin (r=0.585,P<0.001)and leptin (r=0.592,P<0.001).The multivariate stepwise regression analysis showed that higher IL-18 levels represented the main determinant of increased WISP1 levels after adjusting for BMI,waist circumference, fasting insulin,homeostatic model assessment of insulin resistance (HOMA-IR)and HbAlc in obese individuals (β=0.542,P=0.000).WISP1 can be involved in glucose/lipid metabolism in obese youth,which may be modulated by IL-18.Increased WISP1 levels may be a risk factor of obesity and insulin resistance,and WISP1 has a potential therapeutic effect on insulin resistance in obese children and adolescents.
文摘AIM: To explore the contribution of AXIN1, AXIN2 and beta-catenin, components of Wnt signaling pathway, to the carcinogenesis of gastric cancer (GC), we examined AXIN1, AXIN2 exon7 and CTNNB1 (encoding beta- catenin) exon3 mutations in 70 GCs. METHODS: The presence of mutations was identified by polymerase chain reaction (PCR)-based denaturing high-performance liquid chromatography and direct DNA sequencing. Beta-catenin expression was detected by immunohistochemical analysis. RESULTS: Among the 70 GCs, 5 (7.1%) had mutations in one or two of these three components. A frameshift mutation (1 bp deletion) in exon7 of AXIN2 was found in one case. Four cases, including the case with a mutation in AXIN2, had frameshift mutations and missense mutations in AXIN1. Five single nucleotide polymorphisms (SNPs), 334 C>T, 874 C>T, 1396 G>A, 1690 C>T and 1942 T>G, were identified in AXIN1. A frameshift mutation (27 bp deletion) spanning exon3 of CTNNB1 was observed in one case. All four cases with mutations in AXIN1 and AXIN2 showed nuclear beta- catenin expression. CONCLUSION: These data indicate that the mutationsin AXIN1 and AXIN2 may contribute to gastric carcino- genesis.
基金supported by the Medical Research Key Program of Hebei Province,No.20110531
文摘We investigated the role of the Wnt signaling pathway in cerebral ischemia/reperfusion injury by examining β-catenin and glycogen synthase kinase-3β protein expression in the rat hippocampal CA1 region following acute cerebral ischemia/reperfusion. Our results demonstrate that cell apoptosis increases in the CA1 region following ischemia/reperfusion. In addition, β-catenin and glycogen synthase kinase-3β protein expression gradually increases, peaking at 48 hours following reperfusion. Dickkopf-1 administration, after cerebral ischemia/reperfusion injury, results in decreased cell apoptosis, and β-catenin and glycogen synthase kinase-3β expression, in the CA1 region. This suggests that β-catenin and glycogen synthase kinase-3β, both components of the Wnt signaling pathway, participate in cell apoptosis following cerebral ischemia/reperfusion injury.
基金supported by grants from the National Natural Science Foundation of China(No.81370500 and No.81770559)CAMS Innovation Fund for Medical Sciences(No.CIFMS2021-I2M-C&T-A-001 and No.2016-I2M-3-005)the CAMS Initiative for Innovative Medicine(No.CAMS-a12M 2016-I2M-1-007).
文摘Objective While the upregulation of cytochrome P450 family 24 subfamily A member 1(CYP24A1)gene expression has been reported in colon cancer,its role in tumorigenesis remains largely unknown.In this study,we aimed to investigate the involvement of CYP24A1 in Wnt pathway regulation via the nuclear factor kappa B(NF-κB)pathway.Methods The human colon cancer cell lines HCT-116 and Caco-2 were subjected to stimulation with interleukin-6(IL-6)as well as tumor necrosis factor alpha(TNF-α),with subsequent treatment using the NF-κB pathway-specific inhibitor ammonium pyrrolidinedithiocarbamate(PDTC).Furthermore,CYP24A1 expression was subjected to knockdown via the use of small interfering RNA(siRNA).Subsequently,NF-κB pathway activation was determined by an electrophoretic mobility shift assay,and the transcriptional activity ofβ-catenin was determined by a dual-luciferase reporter assay.A mouse ulcerative colitis(UC)-associated carcinogenesis model was established,wherein TNF-αand the NF-κB pathway were blocked by anti-TNF-αmonoclonal antibody and NF-κB antisense oligonucleotides,respectively.Then the tumor size and protein level of CYP24A1 were determined.Results IL-6 and TNF-αupregulated CYP24A1 expression and activated the NF-κB pathway in colon cancer cells.PDTC significantly inhibited this increase in CYP24A1 expression.Additionally,knockdown of CYP24A1 expression by siRNA could partially antagonize Wnt pathway activation.Upregulated CYP24A1 expression was observed in the colonic epithelial cells of UC-associated carcinoma mouse models.Anti-TNF-αmonoclonal antibody and NF-κB antisense oligonucleotides decreased the tumor size and suppressed CYP24A1 expression.Conclusion Taken together,this study suggests that inflammatory factors may increase CYP24A1 expression via NF-κB pathway activation,which in turn stimulates Wnt signaling.
基金supported by the National Natural Science Foundation of China(Grant No.81873103)the Foundation and Frontier Research Project of Chongqing Science and Technology Commission(Grant No.cstc2014jcyjA10001).
文摘Chemotherapy may cause cellular oxidative stress to bone marrow.Oxidative damage of bone marrow hematopoietic microenvironment is closely related to chronic myelosuppression after chemotherapeutic treatment.Angelica sinensis polysaccharides(ASP)are major effective ingredients of traditional Chinese medicine Angelica with multi-target anti-oxidative stress features.In the current study,we investigated the protective roles and mechanisms of ASP on chemotherapy-induced bone marrow stromal cell(BMSC)damage.The human bone marrow stromal cell line HS-5 cells were divided into control group,5-FU group,5-FU+ASP group,and 5-FU+LiCl group to investigate the mechanism of ASP to alleviate 5-FU-induced BMSC proliferation inhibition.The results showed that 5-FU inhibits the growth of HS-5 cells in a time and dose-dependent manner;however,ASP partially counteracted the 5-FU-induced decrease in cell viability,whereas Wnt signaling inhibitor Dkk1 antagonized the effect of ASP on HS-5 cells.ASP reversed the decrease in total cytoplasmicβ-catenin,p-GSK-3β,and CyclinD1 following 5-FU treatment and modulated nuclear expression ofβ-catenin,Lef-1,and C-myc proteins.Furthermore,ASP also enhanced the antioxidant capacity of cells and reduced 5-FU-induced oxidative stress,attenuated FoxO1 expression,thus weakened its downstream apoptosis-related proteins and G0/G1 checkpoint-associated p27^(Kip1) expression to alleviate 5-FU-induced apoptosis and to promote cell cycle progression.All the results above suggest that the protective role of ASP in 5-FU-treated BMSCs proliferation for the chemotherapy may be related to its activating Wnt/β-catenin signaling and keeping homeostasis betweenβ-catenin and FoxO1 under oxidative stress.The study provides a potential therapeutic strategy for alleviating chemotherapeutic damage on BMSCs.
文摘Objective: To investigate the effect of Tip60 gene silencing on the ABCE1 acetylation level and cell proliferation, migration and invasion in TE-1 cells of oesophageal cancer. Methods: The siRNA sequence of Tip60 was transfected with esophageal cancer TE-1 cells. Transfected siRNA vector cells were used as experimental group (si-T), siRNA no-loaded somatic cells were transfected as control group (si-NC), and untransfected TE-1 cells were used as blank group (Group N). ABCE1 mRNA was detected by qRT-PCR, the expression of ABCE1 protein, proliferation-related protein β catenin (β-catenin), GSK3β, and c-myc by Western blot, the protein acetylation level by immunoprecipitation, MTT assay for cell viability, scratch healing and Transwell compartment assay for migration and invasion ability. Results: After 48 h downregulation of the Tip60 gene, TE-1 cells showed no significant changes in the ABCE1 mRNA and protein expression. The acetylation level of ABCE1 decreased significantly, compared with the control group and the blank group. After Tip60 gene silencing, the expression of β-catenin and c-myc protein decreased, while the expression of GSK-3β protein increased. Cytofunctology experiments showed that the proliferative activity, migration and invasion ability of TE-1 cells in the experimental group were significantly inhibited. Conclusion: Down regulation of Tip60 gene can deacetylate ABCE1 protein and inhibit the proliferation activity, migration and invasion ability of esophageal cancer by blocking the conduction of Wnt signaling pathway.