Utilizing lightweight Al alloys in various industrial applications requires achieving precise pressure tightness and leak requirements.Vacuum pressure impregnation(VPI)with thermosetting polymers is commonly used to a...Utilizing lightweight Al alloys in various industrial applications requires achieving precise pressure tightness and leak requirements.Vacuum pressure impregnation(VPI)with thermosetting polymers is commonly used to address leakage defects in die-cast Al alloys.In this study,the efficacy of the VPI technique in sealing alloy parts was investigated using a combination of nondestructive micro X-ray computed tomography(micro XCT)and a standard leak test.The results demonstrate that the commonly used water leak test is insufficient for determining the sealing performance.Instead,micro XCT shows distinct advantages by enabling more comprehensive analysis.It reveals the presence of a low atomic number impregnates sealant within casting defects,which has low grey contrast and allows for visualizing primary leakage paths in 3D.The effective atomic number of impregnated resin is 6.75 and that of Al alloy is 13.69 by dual-energy X-ray CT.This research findings will contribute to enhancing the standard VPI process parameters and the properties of impregnating sealants to improve quality assurance for impregnation in industrial metals.展开更多
GW63K (Mg-6Gd-3Y-0.5Zr) magnesium alloys were prepared successfully by high-vacuum die-casting. Effects of fast shot speed and vacuum level on the grain size and mechanical properties of this alloy were studied. Mic...GW63K (Mg-6Gd-3Y-0.5Zr) magnesium alloys were prepared successfully by high-vacuum die-casting. Effects of fast shot speed and vacuum level on the grain size and mechanical properties of this alloy were studied. Microstructure of the alloys was analyzed by SEM, EDX and optical microscope (OM). The effect of heat treatment on high vacuum die-casting (HVDC) GW63K alloy was also studied. The results indicate that with the increase of fast velocity, the tensile yield strength hardly changes, but the elongation first increases, then decreases. The optimum heat treatment process is solution treatment at 748 K for 2 h and aging at 473 K for 80 h. Under this condition, GW63K magnesium alloy exhibits a maximum tensile strength and elongation of 308 MPa and 9.45%. There is significant correlation between ductility and the presence of external solidified cells (ESCs). The as-cast GW63K alloy consists ofα-Mg and Mg24(Gd,Y)5 particles. After heat treatment, Gd and Y atoms dissolve intoα-Mg matrix.展开更多
Vehicle mass reduction in the automotive industry has become an industry-wide objective.Increasing fuel efficiency and greenhouse gas emission targets for engine-powered vehicles,and ambitions for extended range elect...Vehicle mass reduction in the automotive industry has become an industry-wide objective.Increasing fuel efficiency and greenhouse gas emission targets for engine-powered vehicles,and ambitions for extended range electric vehicles have motivated these reductions in vehicle mass.Mass reduction opportunities in structural automotive applications are increasingly realized through lightweight alloy castings,such as magnesium,primarily due to the ease of component substitution.The traditional benefits of magnesium die-castings including lightweighting and associated compounded mass savings,excellent strength-to-weight ratio,part consolidation,near net-shape forming,dimensional repeatability,and integration of additional components can be realized in closure applications.One recent example is the application of a magnesium die-casting for the structural inner of the liftgate in the 2017 Chrysler Pacifica,replacing nine parts in the previous generation and resulting in a liftgate assembly weight reduction of nearly 50%.The work presented here reviews past and current developments of magnesium die-castings in closure applications and discusses the benefits and challenges of magnesium alloys for these applications,including casting design,corrosion and fastening strategies,and the manufacturing design and assembly methodologies.展开更多
The vacuum die-casting process,started 25 years ago in Japan,has been widely applied.This technology contributes very much to improvement of castings quality.The main factor causing the defects of die castings is the ...The vacuum die-casting process,started 25 years ago in Japan,has been widely applied.This technology contributes very much to improvement of castings quality.The main factor causing the defects of die castings is the trapped air in the mold cavity,while the key technology of vacuum die-casting process is to avoid the trapped air effectively by evacuating the cavity before casting.At the same time,due to the shot speed and the casting pressure reduced in half,the service life of the die is prolonged and the productivity is enhanced,as well.Vacuum die-casting process is of great signif icance in improving the die castings quality and making up the shortcomings of super-high-speed shot casting.展开更多
Al-Si-Mg alloys are the most commonly used material in high vacuum die-casting(HVDC),in which the morphology and distribution ofα-Al grains have important effect on mechanical properties.A multi-component quantitativ...Al-Si-Mg alloys are the most commonly used material in high vacuum die-casting(HVDC),in which the morphology and distribution ofα-Al grains have important effect on mechanical properties.A multi-component quantitative cellular automaton(CA)model was developed to simulate the microstructure and microsegregation of HVDC Al-Si-Mg alloys with different Si contents(7%and 10%)and cooling rates during solidification.The grain number and average grain size with electron backscatter diffraction(EBSD)analysis were used to verify the simulation.The relationship between grain size and nucleation order as well as nuclei density was investigated and discussed.It is found that the growth of grains will be restrained in the location with higher nuclei density.The influence of composition and cooling rate on the solute transport reveals that for AlSi7Mg0.3 alloy the concentration of solute Mg in liquid is higher at the beginning of eutectic solidification.The comparison between simulation and experiment results shows that externally solidified crystals(ESCs)have a significant effect for samples with high cooling rate and narrow solidification interval.展开更多
Silicon-based aluminum casting alloys are known to be one of the most widely used alloy systems mainly due to their superior casting characteristics and unique combination of mechanical and physical properties. Howeve...Silicon-based aluminum casting alloys are known to be one of the most widely used alloy systems mainly due to their superior casting characteristics and unique combination of mechanical and physical properties. However,manufacturing of thin-walled aluminum die-casting components,less than 1.0 mm in thickness,is generally known to be very difficult task to achieve aluminum casting alloys with high fluidity.Therefore,in this study,the optimal die-casting conditions for producing 297 mm×210 mm×0.7 mm thin-walled aluminum component was examined experimentally by using 2 different gating systems,tangential and split type,and vent design.Furthermore,computational solidification simulation was also conducted.The results showed that split type gating system was preferable gating design than tangential type gating system at the point of view of soundness of casting and distortion generated after solidification.It was also found that proper vent design was one of the most important factors for producing thin-wall casting components because it was important for the fulfillment of the thin-wall cavity and the minimization of the casting distortion.展开更多
This paper presents some results of direct observation of mold filling in a specially designed die-casting by X-ray diffraction, including comparison with numerical simulation. Based on such work the authors discuss h...This paper presents some results of direct observation of mold filling in a specially designed die-casting by X-ray diffraction, including comparison with numerical simulation. Based on such work the authors discuss how to prevent gas entrapment and propose new methods.展开更多
The present status and perspectives of Chinese die-casting market were commented. In 2003, the total output of die castings in the whole country was 708000 tons, in which the outputs of Al-alloy, Zn-alloy, Mg-alloy, C...The present status and perspectives of Chinese die-casting market were commented. In 2003, the total output of die castings in the whole country was 708000 tons, in which the outputs of Al-alloy, Zn-alloy, Mg-alloy, Cu-alloy die castings were 474600 tons, 222000 tons, 5800 tons, 5600 tons, respectively, each accounted for 67%, 31.35%, 0.85%, 0.8% of the total. The annual sale volume of die-casting machines was approximately 1800. And the gross output value of dies approached RMB 38 billion, in which die-casting dies accounted for about 10%. In the die-casting industry of the entire country, the foreign capital enterprises, public-run enterprises, township and village enterprises, private enterprises accounted for over 80% of the total die-casting enterprises. Super huge die-casting groups are forming.展开更多
Due to its high hardness,good red hardness and excellent wear resistance at high temperature,high speed steel(HSS)is fit for the roll manufacture.In order to overcome the segregation of centrifugal casting of HSS roll...Due to its high hardness,good red hardness and excellent wear resistance at high temperature,high speed steel(HSS)is fit for the roll manufacture.In order to overcome the segregation of centrifugal casting of HSS roll,die-cast processes were developed and its effects on the properties of the HSS roll were investigated.It was found that pressure,pressing time and speed are three important factors affecting shrinkage cavity.For pouring temperature of 1 400-1 450 ℃,pressure of 150-160 MPa,pressing time of 120-150 sand pressing speed of 14-16mm/s,a compact HSS roll was obtained,which has no segregation and small working allowance.In the high speed wire rod rolling mill,service life of the HSS roll is 5to 8times longer than that of high nickel chromium infinite chilled cast iron roll.展开更多
The Swarm intelligence algorithm is a very prevalent field in which some scholars have made outstanding achievements.As a representative,Slime mould algorithm(SMA)is widely used because of its superior initial perform...The Swarm intelligence algorithm is a very prevalent field in which some scholars have made outstanding achievements.As a representative,Slime mould algorithm(SMA)is widely used because of its superior initial performance.Therefore,this paper focuses on the improvement of the SMA and the mitigation of its stagnation problems.For this aim,the structure of SMA is adjusted to develop the efficiency of the original method.As a stochastic optimizer,SMA mainly stimulates the behavior of slime mold in nature.For the harmony of the exploration and exploitation of SMA,the paper proposed an enhanced algorithm of SMA called ECSMA,in which two mechanisms are embedded into the structure:elite strategy,and chaotic stochastic strategy.The details of the original SMA and the two introduced strategies are given in this paper.Then,the advantages of the improved SMA through mechanism comparison,balance-diversity analysis,and contrasts with other counterparts are validated.The experimental results demonstrate that both mechanisms have a significant enhancing effect on SMA.Also,SMA is applied to four structural design issues of the welded beam design problem,PV design problem,I-beam design problem,and cantilever beam design problem with excellent results.展开更多
A code-generation and recognition technology that uses a modified ejection system in the diecasting process is presented.To achieve the highest level of quality management,the first requirement in the manufacturing pr...A code-generation and recognition technology that uses a modified ejection system in the diecasting process is presented.To achieve the highest level of quality management,the first requirement in the manufacturing process is to establish a product management system according to the specific product unit.Thus,a method to individually identify each product,such as a barcode or QR code,is required during the production process.Products manufactured in the die-casting process always have ejector pin(EP)marks.Herein,an ejection system was modified to generate a unique code using EP marks.This ejection system has two features:an EP with a modified head to show the direction of rotation,and a function to dependently rotate EPs(five or six EPs)with a constant angle.The EPs are numbered according to the rotation angle.Thus,the EP marks can be viewed as a five-or six-digit code.A program was also developed to individually identify the products by automatically detecting and reading the EPs using deep learning-based object detection and classification technology.展开更多
The two production lines for the first phase of the semi-solid die-casting high-end parts project were put into production in this October, and can monthly produce more than 30 thousand die casting parts.
文摘Utilizing lightweight Al alloys in various industrial applications requires achieving precise pressure tightness and leak requirements.Vacuum pressure impregnation(VPI)with thermosetting polymers is commonly used to address leakage defects in die-cast Al alloys.In this study,the efficacy of the VPI technique in sealing alloy parts was investigated using a combination of nondestructive micro X-ray computed tomography(micro XCT)and a standard leak test.The results demonstrate that the commonly used water leak test is insufficient for determining the sealing performance.Instead,micro XCT shows distinct advantages by enabling more comprehensive analysis.It reveals the presence of a low atomic number impregnates sealant within casting defects,which has low grey contrast and allows for visualizing primary leakage paths in 3D.The effective atomic number of impregnated resin is 6.75 and that of Al alloy is 13.69 by dual-energy X-ray CT.This research findings will contribute to enhancing the standard VPI process parameters and the properties of impregnating sealants to improve quality assurance for impregnation in industrial metals.
基金Projects(51171113,51301107)supported by the National Natural Science Foundation of ChinaProjects(2012M511089,2013T60444)supported by China Postdoctoral Science Foundation
文摘GW63K (Mg-6Gd-3Y-0.5Zr) magnesium alloys were prepared successfully by high-vacuum die-casting. Effects of fast shot speed and vacuum level on the grain size and mechanical properties of this alloy were studied. Microstructure of the alloys was analyzed by SEM, EDX and optical microscope (OM). The effect of heat treatment on high vacuum die-casting (HVDC) GW63K alloy was also studied. The results indicate that with the increase of fast velocity, the tensile yield strength hardly changes, but the elongation first increases, then decreases. The optimum heat treatment process is solution treatment at 748 K for 2 h and aging at 473 K for 80 h. Under this condition, GW63K magnesium alloy exhibits a maximum tensile strength and elongation of 308 MPa and 9.45%. There is significant correlation between ductility and the presence of external solidified cells (ESCs). The as-cast GW63K alloy consists ofα-Mg and Mg24(Gd,Y)5 particles. After heat treatment, Gd and Y atoms dissolve intoα-Mg matrix.
文摘Vehicle mass reduction in the automotive industry has become an industry-wide objective.Increasing fuel efficiency and greenhouse gas emission targets for engine-powered vehicles,and ambitions for extended range electric vehicles have motivated these reductions in vehicle mass.Mass reduction opportunities in structural automotive applications are increasingly realized through lightweight alloy castings,such as magnesium,primarily due to the ease of component substitution.The traditional benefits of magnesium die-castings including lightweighting and associated compounded mass savings,excellent strength-to-weight ratio,part consolidation,near net-shape forming,dimensional repeatability,and integration of additional components can be realized in closure applications.One recent example is the application of a magnesium die-casting for the structural inner of the liftgate in the 2017 Chrysler Pacifica,replacing nine parts in the previous generation and resulting in a liftgate assembly weight reduction of nearly 50%.The work presented here reviews past and current developments of magnesium die-castings in closure applications and discusses the benefits and challenges of magnesium alloys for these applications,including casting design,corrosion and fastening strategies,and the manufacturing design and assembly methodologies.
文摘The vacuum die-casting process,started 25 years ago in Japan,has been widely applied.This technology contributes very much to improvement of castings quality.The main factor causing the defects of die castings is the trapped air in the mold cavity,while the key technology of vacuum die-casting process is to avoid the trapped air effectively by evacuating the cavity before casting.At the same time,due to the shot speed and the casting pressure reduced in half,the service life of the die is prolonged and the productivity is enhanced,as well.Vacuum die-casting process is of great signif icance in improving the die castings quality and making up the shortcomings of super-high-speed shot casting.
基金funded by the National Natural Science Foundation of China(No.51875211)the Key Area Research and Development Program of Guangdong Province(No.2020B010186002)the Key Technology Program of Foshan(1920001001040),China.
文摘Al-Si-Mg alloys are the most commonly used material in high vacuum die-casting(HVDC),in which the morphology and distribution ofα-Al grains have important effect on mechanical properties.A multi-component quantitative cellular automaton(CA)model was developed to simulate the microstructure and microsegregation of HVDC Al-Si-Mg alloys with different Si contents(7%and 10%)and cooling rates during solidification.The grain number and average grain size with electron backscatter diffraction(EBSD)analysis were used to verify the simulation.The relationship between grain size and nucleation order as well as nuclei density was investigated and discussed.It is found that the growth of grains will be restrained in the location with higher nuclei density.The influence of composition and cooling rate on the solute transport reveals that for AlSi7Mg0.3 alloy the concentration of solute Mg in liquid is higher at the beginning of eutectic solidification.The comparison between simulation and experiment results shows that externally solidified crystals(ESCs)have a significant effect for samples with high cooling rate and narrow solidification interval.
基金Acknowledgement This work was supported by Korea Institute of Industrial Technology and Gwangju Metropolitan City through "The Advanced Materials and Components Industry Development Program".
文摘Silicon-based aluminum casting alloys are known to be one of the most widely used alloy systems mainly due to their superior casting characteristics and unique combination of mechanical and physical properties. However,manufacturing of thin-walled aluminum die-casting components,less than 1.0 mm in thickness,is generally known to be very difficult task to achieve aluminum casting alloys with high fluidity.Therefore,in this study,the optimal die-casting conditions for producing 297 mm×210 mm×0.7 mm thin-walled aluminum component was examined experimentally by using 2 different gating systems,tangential and split type,and vent design.Furthermore,computational solidification simulation was also conducted.The results showed that split type gating system was preferable gating design than tangential type gating system at the point of view of soundness of casting and distortion generated after solidification.It was also found that proper vent design was one of the most important factors for producing thin-wall casting components because it was important for the fulfillment of the thin-wall cavity and the minimization of the casting distortion.
文摘This paper presents some results of direct observation of mold filling in a specially designed die-casting by X-ray diffraction, including comparison with numerical simulation. Based on such work the authors discuss how to prevent gas entrapment and propose new methods.
文摘The present status and perspectives of Chinese die-casting market were commented. In 2003, the total output of die castings in the whole country was 708000 tons, in which the outputs of Al-alloy, Zn-alloy, Mg-alloy, Cu-alloy die castings were 474600 tons, 222000 tons, 5800 tons, 5600 tons, respectively, each accounted for 67%, 31.35%, 0.85%, 0.8% of the total. The annual sale volume of die-casting machines was approximately 1800. And the gross output value of dies approached RMB 38 billion, in which die-casting dies accounted for about 10%. In the die-casting industry of the entire country, the foreign capital enterprises, public-run enterprises, township and village enterprises, private enterprises accounted for over 80% of the total die-casting enterprises. Super huge die-casting groups are forming.
基金Item Sponsored by Provincial Natural Science Foundation of Henan of China(2003460001)University Young Backbone Teacher Fund of Henan ProvinceTackle-Key-Program of Science and Technology Committee of Henan Province(0424260002)
文摘Due to its high hardness,good red hardness and excellent wear resistance at high temperature,high speed steel(HSS)is fit for the roll manufacture.In order to overcome the segregation of centrifugal casting of HSS roll,die-cast processes were developed and its effects on the properties of the HSS roll were investigated.It was found that pressure,pressing time and speed are three important factors affecting shrinkage cavity.For pouring temperature of 1 400-1 450 ℃,pressure of 150-160 MPa,pressing time of 120-150 sand pressing speed of 14-16mm/s,a compact HSS roll was obtained,which has no segregation and small working allowance.In the high speed wire rod rolling mill,service life of the HSS roll is 5to 8times longer than that of high nickel chromium infinite chilled cast iron roll.
基金supported in part by the National Natural Science Foundation of China(J2124006,62076185)。
文摘The Swarm intelligence algorithm is a very prevalent field in which some scholars have made outstanding achievements.As a representative,Slime mould algorithm(SMA)is widely used because of its superior initial performance.Therefore,this paper focuses on the improvement of the SMA and the mitigation of its stagnation problems.For this aim,the structure of SMA is adjusted to develop the efficiency of the original method.As a stochastic optimizer,SMA mainly stimulates the behavior of slime mold in nature.For the harmony of the exploration and exploitation of SMA,the paper proposed an enhanced algorithm of SMA called ECSMA,in which two mechanisms are embedded into the structure:elite strategy,and chaotic stochastic strategy.The details of the original SMA and the two introduced strategies are given in this paper.Then,the advantages of the improved SMA through mechanism comparison,balance-diversity analysis,and contrasts with other counterparts are validated.The experimental results demonstrate that both mechanisms have a significant enhancing effect on SMA.Also,SMA is applied to four structural design issues of the welded beam design problem,PV design problem,I-beam design problem,and cantilever beam design problem with excellent results.
基金the development project of Industrial and Manufacturing Source Technology of the Korea Institute of Industrial Technology(KITECH)granted financial resource by the Ministry of Economy and Finance,Republic of Korea(No.EO190031).
文摘A code-generation and recognition technology that uses a modified ejection system in the diecasting process is presented.To achieve the highest level of quality management,the first requirement in the manufacturing process is to establish a product management system according to the specific product unit.Thus,a method to individually identify each product,such as a barcode or QR code,is required during the production process.Products manufactured in the die-casting process always have ejector pin(EP)marks.Herein,an ejection system was modified to generate a unique code using EP marks.This ejection system has two features:an EP with a modified head to show the direction of rotation,and a function to dependently rotate EPs(five or six EPs)with a constant angle.The EPs are numbered according to the rotation angle.Thus,the EP marks can be viewed as a five-or six-digit code.A program was also developed to individually identify the products by automatically detecting and reading the EPs using deep learning-based object detection and classification technology.
文摘The two production lines for the first phase of the semi-solid die-casting high-end parts project were put into production in this October, and can monthly produce more than 30 thousand die casting parts.