Dielectric barrier discharge(DBD)is considered as a promising technique to produce large volume uniform plasma at atmospheric pressure,and the dielectric barrier layer between the electrodes plays a key role in the DB...Dielectric barrier discharge(DBD)is considered as a promising technique to produce large volume uniform plasma at atmospheric pressure,and the dielectric barrier layer between the electrodes plays a key role in the DBD processes and enhancing discharge uniformity.In this work,the uniformity and discharge characteristics of the nanosecond(ns)pulsed DBD with dielectric barrier layers made of alumina,quartz glass,polycarbonate(PC),and polypropylene(PP)are investigated via discharge image observation,voltage-current waveform measurement and optical emission spectral diagnosis.Through analyzing discharge image by gray value standard deviation method,the discharge uniformity is quantitatively calculated.The effects of the space electric field intensity,the electron density(Ne),and the space reactive species on the uniformity are studied with quantifying the gap voltage Ug and the discharge current Ig,analyzing the recorded optical emission spectra,and simulating the temporal distribution of Ne with a one-dimensional fluid model.It is found that as the relative permittivity of the dielectric materials increases,the space electric field intensity is enhanced,which results in a higher Ne and electron temperature(Te).Therefore,an appropriate value of space electric field intensity can promote electron avalanches,resulting in uniform and stable plasma by the merging of electron avalanches.However,an excessive value of space electric field intensity leads to the aggregation of space charges and the distortion of the space electric field,which reduce the discharge uniformity.The surface roughness and the surface charge decay are measured to explain the influences of the surface properties and the second electron emission on the discharge uniformity.The results in this work give a comprehensive understanding of the effect of the dielectric materials on the DBD uniformity,and contribute to the selection of dielectric materials for DBD reactor and the realization of atmospheric pressure uniform,stable,and reactive plasma sources.展开更多
The effect of the dielectric ring on the plasma radial uniformity is numerically investigated in the practical 450-mm capacitively coupled plasma reactor by a two-dimensional self-consistent fluid model. The simulatio...The effect of the dielectric ring on the plasma radial uniformity is numerically investigated in the practical 450-mm capacitively coupled plasma reactor by a two-dimensional self-consistent fluid model. The simulations were performed for N2/Ar discharges at the pressure of 300 Pa, and the frequency of 13.56 MHz. In the practical plasma treatment process,the wafer is always surrounded by a dielectric ring, which is less studied. In this paper, the plasma characteristics are systematically investigated by changing the properties of the dielectric ring, i.e., the relative permittivity, the thickness and the length. The results indicate that the plasma parameters strongly depend on the properties of the dielectric ring. As the ratio of the thickness to the relative permittivity of the dielectric ring increases, the electric field at the wafer edge becomes weaker due to the stronger surface charging effect. This gives rise to the lower N~+ ion density, flux and N atom density at the wafer edge. Thus the homogeneous plasma density is obtained by selecting optimal dielectric ring relative permittivity and thickness. In addition, we also find that the length of the dielectric ring should be as short as possible to avoid the discontinuity of the dielectric materials, and thus obtain the large area uniform plasma.展开更多
The performance of dielectric material is a key factor against a long time action in dielectric barrier discharge (DBD) plasma. In this study, the aging of the Al2O3 dielectric material was studied by the Atomic For...The performance of dielectric material is a key factor against a long time action in dielectric barrier discharge (DBD) plasma. In this study, the aging of the Al2O3 dielectric material was studied by the Atomic Force Microscope (AFM), X-ray Photoelectron spectrum (XPS) and Auger electron spectrum (AES) methods. The results showerd that the performance of the dielectric does not descend after an 1000 h aging experiment. Therefore the thin dielectric layers of α-Al2O3 porcelain with a purity above 99% can sustain a long time action of DBD plasma and form gas ionization discharges steadily.展开更多
A method to realize absolute negative refraction index -1 with a two-dimensional (2D) photonic crystal is presented by introducing dielectric anisotropy in the photonic crystal material. The band structures of E-pol...A method to realize absolute negative refraction index -1 with a two-dimensional (2D) photonic crystal is presented by introducing dielectric anisotropy in the photonic crystal material. The band structures of E-polarization mode and H-polarization mode can be adjusted by changing the parameters of materials. Thus the two modes with different polarizations have the same negative refraction index -1 for the same frequency. The results are demonstrated by numerical simulation based on the finite-difference time-domain (FDTD) method.展开更多
The effect of electrostatic tractions on the fracture behavior of a dielectric material under mechanical and/or electric loading is analyzed,by studying a pre-cracked parallel-plate capacitor,and illustrated by plots....The effect of electrostatic tractions on the fracture behavior of a dielectric material under mechanical and/or electric loading is analyzed,by studying a pre-cracked parallel-plate capacitor,and illustrated by plots.The results indicate that electrostatic tractions on the electrodes compress the material in front of the crack tip,while electrostatic tractions on the crack faces have the tendency to close the crack and stretch the material behind the crack tip.Mechanical load is the driving force to propagate the crack,while applied electric field retards crack propagation due to the electrostatic tractions.As a direct consequence,the fracture criterion is composed of two parts:the energy release rate must exceed a critical value and the mechanical load must be higher than the critical value for crack opening.展开更多
In this paper,a lumped RC circuit model,which is based on the Transmission Line Modeling(TLM)method,is used to describe the space charge production and displacement mechanisms in three different solid dielectric mater...In this paper,a lumped RC circuit model,which is based on the Transmission Line Modeling(TLM)method,is used to describe the space charge production and displacement mechanisms in three different solid dielectric materials(LDPE,PTFE and FR4).Each dielectric material is considered as a transmission line with the capacitive and resistance elements.The obtained circuit equations are solved along with the continuity equations for the various charged species in the bulk of solid dielectric material.The electric potential and field,density of different charged species and their recombination rates,resistive and capacitive properties of the solid dielectric material are calculated.In addition,the effects of the variations in the applied voltage,dielectric permittivity and temperature on these physical parameters are examined.Besides,compared with LDPE and PTFE,the net charge density increment rate in FR4 is much higher.Moreover,the influences of temperature on the net charge density in LDPE are not significant.Furthermore,at the higher applied voltages,the current density is increased.Interestingly,the effects of temperature variations on the recombination rates,net charge and current density in LDPE are much lower.Hence,the suitability of LDPE as solid dielectric material is proved.展开更多
This study presents a numerical method based on parallel RC equivalent circuit model fitting methodology for analysis and modeling of dielectric materials.The proposed method employs gradient-descent optimization meth...This study presents a numerical method based on parallel RC equivalent circuit model fitting methodology for analysis and modeling of dielectric materials.The proposed method employs gradient-descent optimization method(GDOM)to estimate parallel RC equivalent circuit model from current waveforms by minimizing sum of squared difference(SSD)error.Estimation of parallel RC equivalent circuit parameters from measured current waveforms provides a useful tool for identification,simulation and analysis of dielectric materials.Moreover,applications of the proposed method for time and frequency analyses of dielectric materials are demonstrated numerically.Numerical simulations were presented to discuss efficiency of the proposed method for modeling,analysis and monitoring of insulator materials.展开更多
Influence of the gassing materials, such as PA6, PMMA, and POM on the dielectric properties of air are investigated. In this work, the fundamental electron collision cross section data were carefully selected and vali...Influence of the gassing materials, such as PA6, PMMA, and POM on the dielectric properties of air are investigated. In this work, the fundamental electron collision cross section data were carefully selected and validated. Then the species compositions of the air–organic vapor mixtures were calculated based on the Gibbs free energy minimization. Finally, the Townsend ionization coefficient, the Townsend electron attachment coefficient and the critical reduced electric field strength were derived from the calculated electron energy distribution function by solving the Boltzmann transport equation. The calculation results indicated that H;O with large attachment cross sections has a great impact on the critical reduced electric field strength of the air–organic vapor mixtures. On the other hand, the vaporization of gassing materials can help to increase the dielectric properties of air circuit breakers to some degree.展开更多
The overall mechanical and electrical behaviors of elastic dielectric composites are investigated with the aid of the concept of material multipoles. In particular, by introducing a statistical continuum material mult...The overall mechanical and electrical behaviors of elastic dielectric composites are investigated with the aid of the concept of material multipoles. In particular, by introducing a statistical continuum material multipole theory, the effects of the electric-elastic interaction and the microstructure (size, shape, orientation,...) of inhomogeneous particles on the overall behaviors of the composites can be obtained. A basic solution for an ellipsoidal elastic inhomogeneity with electric polarization in an infinite elastic dielectric medium is first given, which shows that classical Eshelby 's elastic solution is modified by the presence of electric-elastic interaction. The overall macroscopic constitutive relations and their overall macroscopic material parameters accounting for electroelastic interaction effect are then derived for the elastic dielectric composites. Some quantitative calculations on the problems with statistical anisotropy, the shape effect and the electric-elastic interaction are finally given for dilute composites.展开更多
A novel double-layer film of SiCOF/a-C : F with a low dielectric constant is deposited using a PECVD system. The chemical structure of the film is characterized with Fourier transform infrared spectroscopy (FTIR). ...A novel double-layer film of SiCOF/a-C : F with a low dielectric constant is deposited using a PECVD system. The chemical structure of the film is characterized with Fourier transform infrared spectroscopy (FTIR). The measurements of the film refractive index reveal that the optical frequency dielectric constant (n^2) of the film is almost constant as a function of air exposure time, however, with increasing annealing temperature, the value of n^2 for the film decreases. Possible mechanisms are discussed in detail. The analysis of SIMS profiles for the metal-insulator-silicon structures reveal that in the Al/a-C : F/Si structure,the annealing causes a more rapid diffusion of F in AI in comparison with C, but there is no obvious difference in Si. In addition, no recognizable verge exists between SiCOF and a-C : F films,and the SiCOF film acts as a barrier against the diffusion of carbon into the aluminum layer.展开更多
Two different morphologies of ZnO(lotus-shaped, rod-shaped) and ZnO/PVDF composite materials were prepared. The morphologies of ZnO and composite materials were characterized by scanning electron microscopy(SEM) a...Two different morphologies of ZnO(lotus-shaped, rod-shaped) and ZnO/PVDF composite materials were prepared. The morphologies of ZnO and composite materials were characterized by scanning electron microscopy(SEM) and transmission electron microscopy(TEM). Fourier transform infrared spectroscopy(FT-IR), thermal gravimetry(TG), and X-ray diffraction(XRD) were also used to characterize the chemical structures and phase composites of ZnO and ZnO/PVDF composite materials. Breakdown voltage, dielectric constant and dielectric loss of ZnO/PVDF composite materials were also tested. Microstructure analysis showed that ZnO nanoparticles dispersed uniformly in the matrix. And the dielectric constant expresses a significantly improvement while the dielectric loss and breakdown voltage expresses no significant change. Moreover, dielectric constant keeps an improvement tendency with increasing content of ZnO.展开更多
Owing to the atomically thin nature,two-dimensional(2D)oxide materials have been widely reported to exhibit exciting transport and dielectric properties,such as fine gate controllability and ultrahigh carrier mobility...Owing to the atomically thin nature,two-dimensional(2D)oxide materials have been widely reported to exhibit exciting transport and dielectric properties,such as fine gate controllability and ultrahigh carrier mobility,that outperform their bulk counterpart.However,unlike the successful synthesis of bulk oxide single crystals,reliable methods for synthesizing large-area single crystal of 2D oxide,that would suppress the negative influence from defective grain boundaries,remain unavailable,especially for nonlayered oxide.Herein,we report that the lattice symmetry between the substrate and cerium dioxide(CeO_(2))would allow for the aligned nucleation and epitaxial growth of CeO_(2)on sapphire substrates,enabling the wafer-sized growth of CeO_(2)single crystal.The careful tuning of the growth temperature and oxygen flow rate contributed to the harvesting of CeO_(2)wafer with reduced thickness and enhanced growth rates.The removal of grain boundaries improved the dielectric performance in terms of high dielectric strength(E_(bd)≈8.8 MV·cm^(-1)),suppressed leakage current,along with high dielectric constants(ε_(r)≈24).Our work demonstrates that with fine dielectric performance and ease of synthesizing wafer-sized single crystals,CeO_(2)can function as potential candidate as gate insulator for 2D-materials based nanoelectronics,and we believe the reported protocol of aligned nucleation can be extended to other 2D oxides.展开更多
Polypropylene(PP)-based recyclable materials have attracted tremendous interest for HVDC cable insulation applications due to their superior electrical properties,e.g.,high thermal stability and superior recyclability...Polypropylene(PP)-based recyclable materials have attracted tremendous interest for HVDC cable insulation applications due to their superior electrical properties,e.g.,high thermal stability and superior recyclability.Compared with crosslinked polyethylene(XLPE),PP-based materials exhibit the advantages of not only higher working temperatures but also facile and efficient cable manufacturing with reduced costs,which are highly desirable in HVDC cable manufacturing.Considering their promising advantages,PP-based materials have received significant attention from both academia and industry in the field of HVDC cable insulation.In order to adopt PP as a cable insulation material,the mechanical flexibility of PP should be improved.However,regulations of the mechanical properties inevitably influences the electrical properties of PP.So extensive research has been conducted on the regulation of the mechanical and electrical properties of PP.This review summarizes the research progress on recyclable PP-based materials for HVDC cable insulation applications.Particular attention is placed on the electrical property regulations and material structure-property relationships.The challenges that remain to be addressed and the opportunities for future studies on PP-based recyclable HVDC cable insulation materials are also presented.展开更多
The applications of two-dimensional semiconductors strictly require the reliable integration of ultrathin high-κdielectric materials on the semiconductor surface to enable fine gate control and low power consumption....The applications of two-dimensional semiconductors strictly require the reliable integration of ultrathin high-κdielectric materials on the semiconductor surface to enable fine gate control and low power consumption.As layered oxide materials,MoO_(3)can be potentially used as a high-κtwo-dimensional material with a larger bandgap and high electron affinity.In this work,relying on the oxidization of molybdenum chlorides,we have synthesizedα-MoO_(3)single crystals,which can be easily exfoliated into flakes with thicknesses of a few nanometers and sizes of hundreds of micrometers and fine thermal stability.Based on measurement results of conventional metal/insulator/metal devices and graphene based dual-gate devices,the as-received MoO_(3)nanosheets exhibit improved dielectric performance,including high dielectric constants and competitive breakdown field strength.Our work demonstrates that MoO_(3)with improved crystalline quality is a promising candidate for dielectric materials with a large gate capacitance in future electronics based on two-dimensional materials.展开更多
Aqueous zinc ion batteries show prospects for next-generation renewable energy storage devices.However,the practical applications have been limited by the issues derived from Zn anode.As one of serious problems,Zn den...Aqueous zinc ion batteries show prospects for next-generation renewable energy storage devices.However,the practical applications have been limited by the issues derived from Zn anode.As one of serious problems,Zn dendrite growth caused from the uncontrollable Zn deposition is unfavorable.Herein,with the aim to regulate Zn deposition,an artificial solid–electrolyte interface is subtly engineered with a perovskite type material,BaTiO3,which can be polarized,and its polarization could be switched under the external electric field.Resulting from the aligned dipole in BaTiO3 layer,zinc ions could move in order during cycling process.Regulated Zn migration at the anode/electrolyte interface contributes to the even Zn stripping/plating and confined Zn dendrite growth.As a result,the reversible Zn plating/stripping processes for over 2000 h have been achieved at 1 mA cm^(−2) with capacity of 1 mAh cm−2.Furthermore,this anode endowing the electric dipoles shows enhanced cycling stability for aqueous Zn-MnO2 batteries.The battery can deliver nearly 100%Coulombic efficiency at 2 Ag^(−1) after 300 cycles.展开更多
High discharged energy density and excellent flexible properties in dielectric materials are significantly sought to meet the rapid advancements in the electronics industry. In this study, covalent bonds are construct...High discharged energy density and excellent flexible properties in dielectric materials are significantly sought to meet the rapid advancements in the electronics industry. In this study, covalent bonds are constructed between poly(vinylidene fluoride-chlorotrifluoroethylene), which contains olefinic bonds, and thiol-modified BaTiO_(3) at the interface before the nanocomposite films are fabricated. The presence of the covalent bonds is proved to promote the dispersibility of the modified BaTiO_(3) and enhance the interfacial adhesion between the modified BaTiO_(3) and the polymer, followed by a remarkably positive effect in suppressing the dielectric loss(tanδ) and increasing the breakdown strength(Eb) of the nanocomposite films. In addition, the cross-linking treatment in the preparation process is found to be favourable for improving the mechanical properties of the nanocomposite films, which benefits the enhancement of Eb. Furthermore, at 400% elongation, the stretched nanocomposite film doped with 5 vol% modified BaTiO_(3) exhibits an Eb15.6% greater than that of the unstretched film, and the discharged energy density reaches 11.4 J/cm^(3) with a high discharge energy efficiency of 84.5%. This study provides a novel strategy for preparing flexible nanocomposites with powerful interfacial adhesion at high filler content to achieve high discharged energy density.展开更多
Triggering characteristics of triggered vacuum switch (TVS), including the discharge delay time, delay jitter, range of operational voltage and peak of pulsed current, are investigated. Both structure and experiment...Triggering characteristics of triggered vacuum switch (TVS), including the discharge delay time, delay jitter, range of operational voltage and peak of pulsed current, are investigated. Both structure and experimental circuit of TVS are presented. The results indicate that TVS, as a surface flashover triggering device with high dielectric permittivity material, is with excellent triggering characteristics. When the hold-off voltage reaches 120 kV, the minimum operational voltage is 1.3 kV, and the minimum discharge delay time and jitter are 100 ns and ±10 ns, respectively. The peak current is up to 240 kA when the operational voltage reaches 100 kV. TVS can well satisfy the main demands of high voltage and current applications, and can also be used under a multi-crowbar circuit.展开更多
Application of the pressure controlled isothermal heating vertical deposition method to the fabrication of colloidal photonic crystals is systematically investigated in this paper. The fabricated samples are character...Application of the pressure controlled isothermal heating vertical deposition method to the fabrication of colloidal photonic crystals is systematically investigated in this paper. The fabricated samples are characterized by scanning electron microscope and transmission spectrum. High-quality samples with large transmissions in the pass bands and the sharp band edges are obtained and the optimum growth condition is determined. For the best sample, the transmission in the pass bands approaches 0.9 while that in the band gap reaches 0.1. More importantly, the maximum differential transmission as high as 0.1/nm is achieved. In addition, it is found that the number of stacking layers does not increase linearly with concentration of PS spheres in a solution, and a gradual saturation occurs when the concentration of PS spheres exceeds 1.5 wt.%. The uniformity of the fabricated samples is examined by transmission measurements on areas with different sizes. Finally, the tolerance of the fabricated samples to baking was studied.展开更多
Mg-doped CaCu_(3-x)Mg_(x)Ti_(4)O_(12)(x=0,0.05,0.1,0.15,0.2,at.%)thin films were prepared by a modified sol−gel method.A comparative study on the microstructure and electrical properties of Mg-doped CaCu_(3)Ti_(4)O_(1...Mg-doped CaCu_(3-x)Mg_(x)Ti_(4)O_(12)(x=0,0.05,0.1,0.15,0.2,at.%)thin films were prepared by a modified sol−gel method.A comparative study on the microstructure and electrical properties of Mg-doped CaCu_(3)Ti_(4)O_(12)(CCTO)thin films was carried out.The grain sizes of the Mg-doped CCTO thin films were smaller in comparison to the undoped CCTO films.Furthermore,compared to undoped CCTO films,Mg-doped CCTO thin films obtained higher dielectric constant as well as excellent frequency stability.Meanwhile,Mg doping could reduce the dielectric loss of CCTO thin films in the frequency range of 104−106 Hz.The results showed that the Mg-doped CCTO thin films had the better electrical characteristics compared with the undoped CCTO films.The nonlinear coefficient of Mg-doped CCTO thin films at x=0.15 and x=0.1 was improved to 7.4 and 6.0,respectively.展开更多
Frequency selective surface(FSS)has been extensively studied due to its potential applications in radomes,antenna reflectors,high-impedance surfaces and absorbers.Recently,a new principle of designing FSS has been pro...Frequency selective surface(FSS)has been extensively studied due to its potential applications in radomes,antenna reflectors,high-impedance surfaces and absorbers.Recently,a new principle of designing FSS has been proposed and mainly studied in two levels.In the level of materials,dielectric materials instead of metallic patterns are capable of achieving more functional performance in FSS design.Moreover,FSSs made of dielectric materials can be used in different extreme environments,depending on their electrical,thermal or mechanical properties.In the level of design principle,the theory of metamaterial can be used to design FSS in a convenient and concise way.In this review paper,we provide a brief summary about the recent progress in all-dielectric metamaterial frequency selective surface(ADM-FSS).The basic principle of designing ADM-FSS is summarized.As significant tools,Mie theory and dielectric resonator(DR)theory are given which illustrate clearly how they are used in the FSS design.Then,several design cases including dielectric particle-based ADM-FSS and dielectric network-based ADM-FSS are introduced and reviewed.After a discussion of these two types of ADM-FSSs,we reviewed the existing fabrication techniques that are used in building the experiment samples.Finally,issues and challenges regarding the rapid fabrication techniques and further development aspects are discussed.展开更多
基金supported by National Natural Science Foundation of China(Nos.52037004 and 52177148)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX23_1449).
文摘Dielectric barrier discharge(DBD)is considered as a promising technique to produce large volume uniform plasma at atmospheric pressure,and the dielectric barrier layer between the electrodes plays a key role in the DBD processes and enhancing discharge uniformity.In this work,the uniformity and discharge characteristics of the nanosecond(ns)pulsed DBD with dielectric barrier layers made of alumina,quartz glass,polycarbonate(PC),and polypropylene(PP)are investigated via discharge image observation,voltage-current waveform measurement and optical emission spectral diagnosis.Through analyzing discharge image by gray value standard deviation method,the discharge uniformity is quantitatively calculated.The effects of the space electric field intensity,the electron density(Ne),and the space reactive species on the uniformity are studied with quantifying the gap voltage Ug and the discharge current Ig,analyzing the recorded optical emission spectra,and simulating the temporal distribution of Ne with a one-dimensional fluid model.It is found that as the relative permittivity of the dielectric materials increases,the space electric field intensity is enhanced,which results in a higher Ne and electron temperature(Te).Therefore,an appropriate value of space electric field intensity can promote electron avalanches,resulting in uniform and stable plasma by the merging of electron avalanches.However,an excessive value of space electric field intensity leads to the aggregation of space charges and the distortion of the space electric field,which reduce the discharge uniformity.The surface roughness and the surface charge decay are measured to explain the influences of the surface properties and the second electron emission on the discharge uniformity.The results in this work give a comprehensive understanding of the effect of the dielectric materials on the DBD uniformity,and contribute to the selection of dielectric materials for DBD reactor and the realization of atmospheric pressure uniform,stable,and reactive plasma sources.
基金supported by the National Natural Science Foundation of China(Grant Nos.11335004 and 11405019)the Important National Science and Technology Specific Project of China(Grant No.2011ZX02403-001)
文摘The effect of the dielectric ring on the plasma radial uniformity is numerically investigated in the practical 450-mm capacitively coupled plasma reactor by a two-dimensional self-consistent fluid model. The simulations were performed for N2/Ar discharges at the pressure of 300 Pa, and the frequency of 13.56 MHz. In the practical plasma treatment process,the wafer is always surrounded by a dielectric ring, which is less studied. In this paper, the plasma characteristics are systematically investigated by changing the properties of the dielectric ring, i.e., the relative permittivity, the thickness and the length. The results indicate that the plasma parameters strongly depend on the properties of the dielectric ring. As the ratio of the thickness to the relative permittivity of the dielectric ring increases, the electric field at the wafer edge becomes weaker due to the stronger surface charging effect. This gives rise to the lower N~+ ion density, flux and N atom density at the wafer edge. Thus the homogeneous plasma density is obtained by selecting optimal dielectric ring relative permittivity and thickness. In addition, we also find that the length of the dielectric ring should be as short as possible to avoid the discontinuity of the dielectric materials, and thus obtain the large area uniform plasma.
基金supported by National Natural Science Foundation of China(No.60371035)Special Prophase Project on Basic Research of National Commission of Science and Technology(No.2004ccA06300)Project of Social Development of Dalian City(No.2004B3SF181)
文摘The performance of dielectric material is a key factor against a long time action in dielectric barrier discharge (DBD) plasma. In this study, the aging of the Al2O3 dielectric material was studied by the Atomic Force Microscope (AFM), X-ray Photoelectron spectrum (XPS) and Auger electron spectrum (AES) methods. The results showerd that the performance of the dielectric does not descend after an 1000 h aging experiment. Therefore the thin dielectric layers of α-Al2O3 porcelain with a purity above 99% can sustain a long time action of DBD plasma and form gas ionization discharges steadily.
基金This work was supported by the National Natural Science Foundation of China(No.60471047)the Natural Science Foundation of Guangdong Province(No.04011308)the Shenzhen Bureau of Science and Technology
文摘A method to realize absolute negative refraction index -1 with a two-dimensional (2D) photonic crystal is presented by introducing dielectric anisotropy in the photonic crystal material. The band structures of E-polarization mode and H-polarization mode can be adjusted by changing the parameters of materials. Thus the two modes with different polarizations have the same negative refraction index -1 for the same frequency. The results are demonstrated by numerical simulation based on the finite-difference time-domain (FDTD) method.
基金supported by the Hong Kong Research Grants Council(Grant No. 622610)supported by the Nanotechnology Program at HKUST
文摘The effect of electrostatic tractions on the fracture behavior of a dielectric material under mechanical and/or electric loading is analyzed,by studying a pre-cracked parallel-plate capacitor,and illustrated by plots.The results indicate that electrostatic tractions on the electrodes compress the material in front of the crack tip,while electrostatic tractions on the crack faces have the tendency to close the crack and stretch the material behind the crack tip.Mechanical load is the driving force to propagate the crack,while applied electric field retards crack propagation due to the electrostatic tractions.As a direct consequence,the fracture criterion is composed of two parts:the energy release rate must exceed a critical value and the mechanical load must be higher than the critical value for crack opening.
文摘In this paper,a lumped RC circuit model,which is based on the Transmission Line Modeling(TLM)method,is used to describe the space charge production and displacement mechanisms in three different solid dielectric materials(LDPE,PTFE and FR4).Each dielectric material is considered as a transmission line with the capacitive and resistance elements.The obtained circuit equations are solved along with the continuity equations for the various charged species in the bulk of solid dielectric material.The electric potential and field,density of different charged species and their recombination rates,resistive and capacitive properties of the solid dielectric material are calculated.In addition,the effects of the variations in the applied voltage,dielectric permittivity and temperature on these physical parameters are examined.Besides,compared with LDPE and PTFE,the net charge density increment rate in FR4 is much higher.Moreover,the influences of temperature on the net charge density in LDPE are not significant.Furthermore,at the higher applied voltages,the current density is increased.Interestingly,the effects of temperature variations on the recombination rates,net charge and current density in LDPE are much lower.Hence,the suitability of LDPE as solid dielectric material is proved.
文摘This study presents a numerical method based on parallel RC equivalent circuit model fitting methodology for analysis and modeling of dielectric materials.The proposed method employs gradient-descent optimization method(GDOM)to estimate parallel RC equivalent circuit model from current waveforms by minimizing sum of squared difference(SSD)error.Estimation of parallel RC equivalent circuit parameters from measured current waveforms provides a useful tool for identification,simulation and analysis of dielectric materials.Moreover,applications of the proposed method for time and frequency analyses of dielectric materials are demonstrated numerically.Numerical simulations were presented to discuss efficiency of the proposed method for modeling,analysis and monitoring of insulator materials.
基金supported by the National Key Basic Research Program of China(973 Program)2015CB251002National Natural Science Foundation of China under Grant 51521065,51577145+1 种基金the Fundamental Research Funds for the Central UniversitiesShaanxi Province Natural Science Foundation 2013JM-7010
文摘Influence of the gassing materials, such as PA6, PMMA, and POM on the dielectric properties of air are investigated. In this work, the fundamental electron collision cross section data were carefully selected and validated. Then the species compositions of the air–organic vapor mixtures were calculated based on the Gibbs free energy minimization. Finally, the Townsend ionization coefficient, the Townsend electron attachment coefficient and the critical reduced electric field strength were derived from the calculated electron energy distribution function by solving the Boltzmann transport equation. The calculation results indicated that H;O with large attachment cross sections has a great impact on the critical reduced electric field strength of the air–organic vapor mixtures. On the other hand, the vaporization of gassing materials can help to increase the dielectric properties of air circuit breakers to some degree.
文摘The overall mechanical and electrical behaviors of elastic dielectric composites are investigated with the aid of the concept of material multipoles. In particular, by introducing a statistical continuum material multipole theory, the effects of the electric-elastic interaction and the microstructure (size, shape, orientation,...) of inhomogeneous particles on the overall behaviors of the composites can be obtained. A basic solution for an ellipsoidal elastic inhomogeneity with electric polarization in an infinite elastic dielectric medium is first given, which shows that classical Eshelby 's elastic solution is modified by the presence of electric-elastic interaction. The overall macroscopic constitutive relations and their overall macroscopic material parameters accounting for electroelastic interaction effect are then derived for the elastic dielectric composites. Some quantitative calculations on the problems with statistical anisotropy, the shape effect and the electric-elastic interaction are finally given for dilute composites.
文摘A novel double-layer film of SiCOF/a-C : F with a low dielectric constant is deposited using a PECVD system. The chemical structure of the film is characterized with Fourier transform infrared spectroscopy (FTIR). The measurements of the film refractive index reveal that the optical frequency dielectric constant (n^2) of the film is almost constant as a function of air exposure time, however, with increasing annealing temperature, the value of n^2 for the film decreases. Possible mechanisms are discussed in detail. The analysis of SIMS profiles for the metal-insulator-silicon structures reveal that in the Al/a-C : F/Si structure,the annealing causes a more rapid diffusion of F in AI in comparison with C, but there is no obvious difference in Si. In addition, no recognizable verge exists between SiCOF and a-C : F films,and the SiCOF film acts as a barrier against the diffusion of carbon into the aluminum layer.
基金Funded by the National Natural Science Foundation of China(51677045)the Natural Science Foundation of Heilongjiang Province of China(E201224)
文摘Two different morphologies of ZnO(lotus-shaped, rod-shaped) and ZnO/PVDF composite materials were prepared. The morphologies of ZnO and composite materials were characterized by scanning electron microscopy(SEM) and transmission electron microscopy(TEM). Fourier transform infrared spectroscopy(FT-IR), thermal gravimetry(TG), and X-ray diffraction(XRD) were also used to characterize the chemical structures and phase composites of ZnO and ZnO/PVDF composite materials. Breakdown voltage, dielectric constant and dielectric loss of ZnO/PVDF composite materials were also tested. Microstructure analysis showed that ZnO nanoparticles dispersed uniformly in the matrix. And the dielectric constant expresses a significantly improvement while the dielectric loss and breakdown voltage expresses no significant change. Moreover, dielectric constant keeps an improvement tendency with increasing content of ZnO.
基金supported by the National Key Research and Development Program of China(No.2022YFA1204900)the National Natural Science Foundation of China(Nos.52372038,12374035 and T2188101)the Innovation Program for Quantum Science and Technology(No.2021ZD0302600).
文摘Owing to the atomically thin nature,two-dimensional(2D)oxide materials have been widely reported to exhibit exciting transport and dielectric properties,such as fine gate controllability and ultrahigh carrier mobility,that outperform their bulk counterpart.However,unlike the successful synthesis of bulk oxide single crystals,reliable methods for synthesizing large-area single crystal of 2D oxide,that would suppress the negative influence from defective grain boundaries,remain unavailable,especially for nonlayered oxide.Herein,we report that the lattice symmetry between the substrate and cerium dioxide(CeO_(2))would allow for the aligned nucleation and epitaxial growth of CeO_(2)on sapphire substrates,enabling the wafer-sized growth of CeO_(2)single crystal.The careful tuning of the growth temperature and oxygen flow rate contributed to the harvesting of CeO_(2)wafer with reduced thickness and enhanced growth rates.The removal of grain boundaries improved the dielectric performance in terms of high dielectric strength(E_(bd)≈8.8 MV·cm^(-1)),suppressed leakage current,along with high dielectric constants(ε_(r)≈24).Our work demonstrates that with fine dielectric performance and ease of synthesizing wafer-sized single crystals,CeO_(2)can function as potential candidate as gate insulator for 2D-materials based nanoelectronics,and we believe the reported protocol of aligned nucleation can be extended to other 2D oxides.
基金supported by the National Natural Science Foundation of China(No.51921005).
文摘Polypropylene(PP)-based recyclable materials have attracted tremendous interest for HVDC cable insulation applications due to their superior electrical properties,e.g.,high thermal stability and superior recyclability.Compared with crosslinked polyethylene(XLPE),PP-based materials exhibit the advantages of not only higher working temperatures but also facile and efficient cable manufacturing with reduced costs,which are highly desirable in HVDC cable manufacturing.Considering their promising advantages,PP-based materials have received significant attention from both academia and industry in the field of HVDC cable insulation.In order to adopt PP as a cable insulation material,the mechanical flexibility of PP should be improved.However,regulations of the mechanical properties inevitably influences the electrical properties of PP.So extensive research has been conducted on the regulation of the mechanical and electrical properties of PP.This review summarizes the research progress on recyclable PP-based materials for HVDC cable insulation applications.Particular attention is placed on the electrical property regulations and material structure-property relationships.The challenges that remain to be addressed and the opportunities for future studies on PP-based recyclable HVDC cable insulation materials are also presented.
基金financially supported by the National Key Research and Development Program of China(2022YFA1204900)the National Natural Science Foundation of China(No.52372038 and T2188101).
文摘The applications of two-dimensional semiconductors strictly require the reliable integration of ultrathin high-κdielectric materials on the semiconductor surface to enable fine gate control and low power consumption.As layered oxide materials,MoO_(3)can be potentially used as a high-κtwo-dimensional material with a larger bandgap and high electron affinity.In this work,relying on the oxidization of molybdenum chlorides,we have synthesizedα-MoO_(3)single crystals,which can be easily exfoliated into flakes with thicknesses of a few nanometers and sizes of hundreds of micrometers and fine thermal stability.Based on measurement results of conventional metal/insulator/metal devices and graphene based dual-gate devices,the as-received MoO_(3)nanosheets exhibit improved dielectric performance,including high dielectric constants and competitive breakdown field strength.Our work demonstrates that MoO_(3)with improved crystalline quality is a promising candidate for dielectric materials with a large gate capacitance in future electronics based on two-dimensional materials.
基金the partial financial support from the National Natural Science Foundation of China(21935003 and 21805182)National Key Research and Development Plan(2016YFB0901503)+1 种基金Shanghai Pujiang Program(18PJ1403800)the support from the Hundreds of Talents program of Sun Yat-sen University。
文摘Aqueous zinc ion batteries show prospects for next-generation renewable energy storage devices.However,the practical applications have been limited by the issues derived from Zn anode.As one of serious problems,Zn dendrite growth caused from the uncontrollable Zn deposition is unfavorable.Herein,with the aim to regulate Zn deposition,an artificial solid–electrolyte interface is subtly engineered with a perovskite type material,BaTiO3,which can be polarized,and its polarization could be switched under the external electric field.Resulting from the aligned dipole in BaTiO3 layer,zinc ions could move in order during cycling process.Regulated Zn migration at the anode/electrolyte interface contributes to the even Zn stripping/plating and confined Zn dendrite growth.As a result,the reversible Zn plating/stripping processes for over 2000 h have been achieved at 1 mA cm^(−2) with capacity of 1 mAh cm−2.Furthermore,this anode endowing the electric dipoles shows enhanced cycling stability for aqueous Zn-MnO2 batteries.The battery can deliver nearly 100%Coulombic efficiency at 2 Ag^(−1) after 300 cycles.
基金supported by the Major Science and Technology Innovation Project of Shandong Province of China(2019JZZY020231 and 2019JZZY020232)。
文摘High discharged energy density and excellent flexible properties in dielectric materials are significantly sought to meet the rapid advancements in the electronics industry. In this study, covalent bonds are constructed between poly(vinylidene fluoride-chlorotrifluoroethylene), which contains olefinic bonds, and thiol-modified BaTiO_(3) at the interface before the nanocomposite films are fabricated. The presence of the covalent bonds is proved to promote the dispersibility of the modified BaTiO_(3) and enhance the interfacial adhesion between the modified BaTiO_(3) and the polymer, followed by a remarkably positive effect in suppressing the dielectric loss(tanδ) and increasing the breakdown strength(Eb) of the nanocomposite films. In addition, the cross-linking treatment in the preparation process is found to be favourable for improving the mechanical properties of the nanocomposite films, which benefits the enhancement of Eb. Furthermore, at 400% elongation, the stretched nanocomposite film doped with 5 vol% modified BaTiO_(3) exhibits an Eb15.6% greater than that of the unstretched film, and the discharged energy density reaches 11.4 J/cm^(3) with a high discharge energy efficiency of 84.5%. This study provides a novel strategy for preparing flexible nanocomposites with powerful interfacial adhesion at high filler content to achieve high discharged energy density.
基金supported by the New Century Talent Foundation of Ministry of Education of China (NCET-08-0438)
文摘Triggering characteristics of triggered vacuum switch (TVS), including the discharge delay time, delay jitter, range of operational voltage and peak of pulsed current, are investigated. Both structure and experimental circuit of TVS are presented. The results indicate that TVS, as a surface flashover triggering device with high dielectric permittivity material, is with excellent triggering characteristics. When the hold-off voltage reaches 120 kV, the minimum operational voltage is 1.3 kV, and the minimum discharge delay time and jitter are 100 ns and ±10 ns, respectively. The peak current is up to 240 kA when the operational voltage reaches 100 kV. TVS can well satisfy the main demands of high voltage and current applications, and can also be used under a multi-crowbar circuit.
基金Project supported by the National Natural Science Foundation of China (Grant No 10674051)the Natural Science Foundation of Guangdong province, China (Grant No 06025082)+1 种基金the Program for Innovative Research Team of the Higher Education in Guangdong (Grant No 06CXTD005)the Program for New Century Excellent Talents (NCET) in University of China (Grant No ncet-04-0829)
文摘Application of the pressure controlled isothermal heating vertical deposition method to the fabrication of colloidal photonic crystals is systematically investigated in this paper. The fabricated samples are characterized by scanning electron microscope and transmission spectrum. High-quality samples with large transmissions in the pass bands and the sharp band edges are obtained and the optimum growth condition is determined. For the best sample, the transmission in the pass bands approaches 0.9 while that in the band gap reaches 0.1. More importantly, the maximum differential transmission as high as 0.1/nm is achieved. In addition, it is found that the number of stacking layers does not increase linearly with concentration of PS spheres in a solution, and a gradual saturation occurs when the concentration of PS spheres exceeds 1.5 wt.%. The uniformity of the fabricated samples is examined by transmission measurements on areas with different sizes. Finally, the tolerance of the fabricated samples to baking was studied.
基金the financial supports from the National Natural Science Foundation of China(Nos.52072004,51802003,51572113)。
文摘Mg-doped CaCu_(3-x)Mg_(x)Ti_(4)O_(12)(x=0,0.05,0.1,0.15,0.2,at.%)thin films were prepared by a modified sol−gel method.A comparative study on the microstructure and electrical properties of Mg-doped CaCu_(3)Ti_(4)O_(12)(CCTO)thin films was carried out.The grain sizes of the Mg-doped CCTO thin films were smaller in comparison to the undoped CCTO films.Furthermore,compared to undoped CCTO films,Mg-doped CCTO thin films obtained higher dielectric constant as well as excellent frequency stability.Meanwhile,Mg doping could reduce the dielectric loss of CCTO thin films in the frequency range of 104−106 Hz.The results showed that the Mg-doped CCTO thin films had the better electrical characteristics compared with the undoped CCTO films.The nonlinear coefficient of Mg-doped CCTO thin films at x=0.15 and x=0.1 was improved to 7.4 and 6.0,respectively.
基金the support from the National Natural Science Foundation of China under Grant N1os.11504428,11274389,61331005,61671466the National Natural Science Foundation of Shaanxi under Grant Nos.2016JM6026.
文摘Frequency selective surface(FSS)has been extensively studied due to its potential applications in radomes,antenna reflectors,high-impedance surfaces and absorbers.Recently,a new principle of designing FSS has been proposed and mainly studied in two levels.In the level of materials,dielectric materials instead of metallic patterns are capable of achieving more functional performance in FSS design.Moreover,FSSs made of dielectric materials can be used in different extreme environments,depending on their electrical,thermal or mechanical properties.In the level of design principle,the theory of metamaterial can be used to design FSS in a convenient and concise way.In this review paper,we provide a brief summary about the recent progress in all-dielectric metamaterial frequency selective surface(ADM-FSS).The basic principle of designing ADM-FSS is summarized.As significant tools,Mie theory and dielectric resonator(DR)theory are given which illustrate clearly how they are used in the FSS design.Then,several design cases including dielectric particle-based ADM-FSS and dielectric network-based ADM-FSS are introduced and reviewed.After a discussion of these two types of ADM-FSSs,we reviewed the existing fabrication techniques that are used in building the experiment samples.Finally,issues and challenges regarding the rapid fabrication techniques and further development aspects are discussed.