Real-world passive radiative cooling requires highly emissive,selective,and omnidirectional thermal emitters to maintain the radiative cooler at a certain temperature below the ambient temperature while maximizing the...Real-world passive radiative cooling requires highly emissive,selective,and omnidirectional thermal emitters to maintain the radiative cooler at a certain temperature below the ambient temperature while maximizing the net cooling power.Despite various selective thermal emitters have been demonstrated,it is still challenging to achieve these conditions sim-ultaneously because of the extreme difficulty in controlling thermal emission of photonic structures in multidimension.Here we demonstrated hybrid polar dielectric metasurface thermal emitters with machine learning inverse design,en-abling a high emissivity of~0.92 within the atmospheric transparency window 8-13μm,a large spectral selectivity of~1.8 and a wide emission angle up to 80 degrees,simultaneously.This selective and omnidirectional thermal emitter has led to a new record of temperature reduction as large as~15.4°C under strong solar irradiation of~800 W/m2,signific-antly surpassing the state-of-the-art results.The designed structures also show great potential in tackling the urban heat island effect,with modelling results suggesting a large energy saving and deployment area reduction.This research will make significant impact on passive radiative cooling,thermal energy photonics and tackling global climate change.展开更多
Ti33O55 films are deposited with the help of an electron beam evaporator for their applications in metasurfaces. The film of subwavelength (632nm) thickness is deposited on a silicon substrate and annealed at 400℃....Ti33O55 films are deposited with the help of an electron beam evaporator for their applications in metasurfaces. The film of subwavelength (632nm) thickness is deposited on a silicon substrate and annealed at 400℃. The ellipsometry result shows a high refractive index above 2.5 with the minimum absorption coefficient in the visible region, which is necessary for high efficiency of transparent metasurfaces. Atomic force microscopy analysis is employed to measure the roughness of the as-deposited films. It is seen from micrographs that the deposited films are very smooth with the minimum roughness to prevent scattering and absorption losses for metasurface devices. The absence of grains and cracks can be seen by scanning electron microscope analysis, which is favorable for electron beam lithography. Fourier transform infrared spectroscopy reveals the transmission and reflection obtained from the film deposited on glass substrates. The as-deposited film shows high transmission above 60%, which is in good agreement with metasurfaces.展开更多
The photonic spin Hall effect has attracted considerable research interest due to its potential applications in spincontrolled nanophotonic devices.However,realization of the asymmetrical photonic spin Hall effect wit...The photonic spin Hall effect has attracted considerable research interest due to its potential applications in spincontrolled nanophotonic devices.However,realization of the asymmetrical photonic spin Hall effect with a single optical element is still a challenge due to the conjugation of the Pancharatnam-Berry phase,which reduces the flexibility in various applications.Here,we demonstrate an asymmetrical spin-dependent beam splitter based on a single-layer dielectric metasurface exhibiting strong and controllable optical response.The metasurface consists of an array of dielectric nanofins,where both varying rotation angles and feature sizes of the unit cells are utilized to create high-efficiency dielectric metasurfaces,which enables to break the conjugated characteristic of phase gradient.Thanks to the superiority of the phase modulation ability,when the fabricated metasurface is under normal incidence with a wavelength of 1550 nm,the lefthanded circular polarization(LCP)light exhibits an anomalous refraction angle of 28.9°,while the right-handed circular polarization(RCP)light transmits directly.The method we proposed can be used for the flexible manipulation of spin photons and has potentials in high efficiency metasurfaces with versatile functionalities,especially with metasurfaces in a compact space.展开更多
Metasurfaces have found broad applicability in free-space optics,while its potential to tailor guided waves remains barely explored.By synergizing the Jones matrix model with generalized Snell’s law under the phase-m...Metasurfaces have found broad applicability in free-space optics,while its potential to tailor guided waves remains barely explored.By synergizing the Jones matrix model with generalized Snell’s law under the phase-matching condition,we propose a universal design strategy for versatile on-chip mode-selective coupling with polarization sensitivity,multiple working wavelengths,and high efficiency concurrently.The coupling direction,operation frequency,and excited mode type can be designed at will for arbitrary incident polarizations,outperforming previous technology that only works for specific polarizations and lacks versatile mode controllability.Here,using silicon-nanoantenna-patterned silicon-nitride photonic waveguides,we numerically demonstrate a set of chip-scale optical couplers around 1.55μm,including mode-selective directional couplers with high coupling efficiency over 57%and directivity about 23 d B.Polarization and wavelength demultiplexer scenarios are also proposed with 67%maximum efficiency and an extinction ratio of 20 d B.Moreover,a chip-integrated twisted light generator,coupling free-space linear polarization into an optical vortex carrying 1 h orbital angular momentum(OAM),is also reported to validate the mode-control flexibility.This comprehensive method may motivate compact wavelength/polarization(de)multiplexers,multifunctional mode converters,on-chip OAM generators for photonic integrated circuits,and high-speed optical telecommunications.展开更多
Free from phase-matching constraints,plasmonic metasurfaces have contributed significantly to the control of optical nonlinearity and enhancement of nonlinear generation efficiency by engineering subwavelength meta-at...Free from phase-matching constraints,plasmonic metasurfaces have contributed significantly to the control of optical nonlinearity and enhancement of nonlinear generation efficiency by engineering subwavelength meta-atoms.However,high dissipative losses and inevitable thermal heating limit their applicability in nonlinear nanophotonics.All-dielectric metasurfaces,supporting both electric and magnetic Mie-type resonances in their nanostructures,have appeared as a promising alternative to nonlinear plasmonics.High-index dielectric nanostructures,allowing additional magnetic resonances,can induce magnetic nonlinear effects,which,along with electric nonlinearities,increase the nonlinear conversion efficiency.In addition,low dissipative losses and high damage thresholds provide an extra degree of freedom for operating at high pump intensities,resulting in a considerable enhancement of the nonlinear processes.We discuss the current state of the art in the intensely developing area of all-dielectric nonlinear nanostructures and metasurfaces,including the role of Mie modes,Fano resonances,and anapole moments for harmonic generation,wave mixing,and ultrafast optical switching.Furthermore,we review the recent progress in the nonlinear phase and wavefront control using all-dielectric metasurfaces.We discuss techniques to realize alldielectric metasurfaces for multifunctional applications and generation of second-order nonlinear processes from complementary metal–oxide–semiconductor-compatible materials.展开更多
Dielectric metasurfaces-based planar optical spatial differentiator and edge detection have recently been proposed to play an important role in the parallel and fast image processing technology.With the development of...Dielectric metasurfaces-based planar optical spatial differentiator and edge detection have recently been proposed to play an important role in the parallel and fast image processing technology.With the development of dielectric metasurfaces of different geometries and resonance mechanisms,diverse on-chip spatial differentiators have been proposed by tailoring the dispersion characteristics of subwavelength structures.This review focuses on the basic principles and characteristic parameters of dielectric metasurfaces as first-and second-order spatial differentiators realized via the Green's function approach.The spatial bandwidth and polarization dependence are emphasized as key properties by comparing the optical transfer flinctions of metasurfaces for different incident wavevectors and polarizations.To present the operational capabilities of a two-dimensional spatial differentiator in image information acquisition,edge detection is described to illustrate the practicability of the device.As an application example,experimental demonstrations of edge detection for different biological cells and a flower mold are discussed,in which a spatial differentiator and objective lens or camera are integrated in three optical pathway configurations.The realization of spatial differentiators and edge detection with dielectric metasurfaces provides new opportunities for ultrafast information identification in biological imaging and machine vision.展开更多
Dynamically controlling terahertz(THz)wavefronts in a designable fashion is highly desired in practice.However,available methods working at microwave frequencies do not work well in the THz regime due to lacking suita...Dynamically controlling terahertz(THz)wavefronts in a designable fashion is highly desired in practice.However,available methods working at microwave frequencies do not work well in the THz regime due to lacking suitable tunable elements with submicrometer sizes.Here,instead of locally controlling individual meta-atoms in a THz metasurface,we show that rotating different layers(each exhibiting a particular phase profile)in a cascaded metadevice at different speeds can dynamically change the effective Jonesmatrix property of the whole device,thus enabling extraordinary manipulations on the wavefront and polarization characteristics of a THz beam impinging on the device.After illustrating our strategy based on model calculations,we experimentally demonstrate two proof-of-concept metadevices,each consisting of two carefully designed all-silicon transmissive metasurfaces exhibiting different phase profiles.Rotating two metasurfaces inside the fabricated devices at different speeds,we experimentally demonstrate that the first metadevice can efficiently redirect a normally incident THz beam to scan over a wide solid-angle range,while the second one can dynamically manipulate both the wavefront and polarization of a THz beam.Our results pave the way to achieving dynamic control of THz beams,which is useful in many applications,such as THz radar,and bio-and chemical sensing and imaging.展开更多
We review the physics and some applications of photonic structures designed for the realization of strong nonlinear chiroptical response.We pay much attention to the recent strategy of utilizing different types of opt...We review the physics and some applications of photonic structures designed for the realization of strong nonlinear chiroptical response.We pay much attention to the recent strategy of utilizing different types of optical resonances in metallic and dielectric subwavelength structures and metasurfaces,including surface plasmon resonances,Mie resonances,lattice-guided modes,and bound states in the continuum.We summarize earlier results and discuss more recent developments for achieving large circular dichroism combined with the high efficiency of nonlinear harmonic generation.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(Grant No.62175154)the Shanghai Pujiang Program(20PJ1411900)+2 种基金the Shanghai Science and Technology Program(21ZR1445500)the Shanghai Yangfan Program(22YF1430200)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning.
文摘Real-world passive radiative cooling requires highly emissive,selective,and omnidirectional thermal emitters to maintain the radiative cooler at a certain temperature below the ambient temperature while maximizing the net cooling power.Despite various selective thermal emitters have been demonstrated,it is still challenging to achieve these conditions sim-ultaneously because of the extreme difficulty in controlling thermal emission of photonic structures in multidimension.Here we demonstrated hybrid polar dielectric metasurface thermal emitters with machine learning inverse design,en-abling a high emissivity of~0.92 within the atmospheric transparency window 8-13μm,a large spectral selectivity of~1.8 and a wide emission angle up to 80 degrees,simultaneously.This selective and omnidirectional thermal emitter has led to a new record of temperature reduction as large as~15.4°C under strong solar irradiation of~800 W/m2,signific-antly surpassing the state-of-the-art results.The designed structures also show great potential in tackling the urban heat island effect,with modelling results suggesting a large energy saving and deployment area reduction.This research will make significant impact on passive radiative cooling,thermal energy photonics and tackling global climate change.
基金Information Technology University of the Punjab, Lahore, Pakistan for financial supportthe financial support by Engineering Research Center Program(NRF-2015R1A5A1037668)+1 种基金global Ph.D. fellowship(NRF-2016H1A2A1906519)the KRF fellowship(NRF-2017H1D3A1A02011379)through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (MSIP) of Korean government
文摘Ti33O55 films are deposited with the help of an electron beam evaporator for their applications in metasurfaces. The film of subwavelength (632nm) thickness is deposited on a silicon substrate and annealed at 400℃. The ellipsometry result shows a high refractive index above 2.5 with the minimum absorption coefficient in the visible region, which is necessary for high efficiency of transparent metasurfaces. Atomic force microscopy analysis is employed to measure the roughness of the as-deposited films. It is seen from micrographs that the deposited films are very smooth with the minimum roughness to prevent scattering and absorption losses for metasurface devices. The absence of grains and cracks can be seen by scanning electron microscope analysis, which is favorable for electron beam lithography. Fourier transform infrared spectroscopy reveals the transmission and reflection obtained from the film deposited on glass substrates. The as-deposited film shows high transmission above 60%, which is in good agreement with metasurfaces.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12074420,U21A20140,and 61905274)the Beijing Municipal Science&Technology Commission,Administrative Commission of Zhongguancun Science Park(Grant No.Z211100004821009)+1 种基金the Chinese Academy of Sciences through the Project for Young Scientists in Basic Research(Grant No.YSBR-021)the Synergic Extreme Condition User Facility
文摘The photonic spin Hall effect has attracted considerable research interest due to its potential applications in spincontrolled nanophotonic devices.However,realization of the asymmetrical photonic spin Hall effect with a single optical element is still a challenge due to the conjugation of the Pancharatnam-Berry phase,which reduces the flexibility in various applications.Here,we demonstrate an asymmetrical spin-dependent beam splitter based on a single-layer dielectric metasurface exhibiting strong and controllable optical response.The metasurface consists of an array of dielectric nanofins,where both varying rotation angles and feature sizes of the unit cells are utilized to create high-efficiency dielectric metasurfaces,which enables to break the conjugated characteristic of phase gradient.Thanks to the superiority of the phase modulation ability,when the fabricated metasurface is under normal incidence with a wavelength of 1550 nm,the lefthanded circular polarization(LCP)light exhibits an anomalous refraction angle of 28.9°,while the right-handed circular polarization(RCP)light transmits directly.The method we proposed can be used for the flexible manipulation of spin photons and has potentials in high efficiency metasurfaces with versatile functionalities,especially with metasurfaces in a compact space.
基金National Natural Science Foundation of China(61675114,61875103,61935013,61975133,U1701661)Natural Science Foundation of Beijing Municipality(501100004826)+1 种基金Tsinghua University Initiative Scientific Research Program(20151080709)Beijing Young Talents Support Project(2017000020124G044)。
文摘Metasurfaces have found broad applicability in free-space optics,while its potential to tailor guided waves remains barely explored.By synergizing the Jones matrix model with generalized Snell’s law under the phase-matching condition,we propose a universal design strategy for versatile on-chip mode-selective coupling with polarization sensitivity,multiple working wavelengths,and high efficiency concurrently.The coupling direction,operation frequency,and excited mode type can be designed at will for arbitrary incident polarizations,outperforming previous technology that only works for specific polarizations and lacks versatile mode controllability.Here,using silicon-nanoantenna-patterned silicon-nitride photonic waveguides,we numerically demonstrate a set of chip-scale optical couplers around 1.55μm,including mode-selective directional couplers with high coupling efficiency over 57%and directivity about 23 d B.Polarization and wavelength demultiplexer scenarios are also proposed with 67%maximum efficiency and an extinction ratio of 20 d B.Moreover,a chip-integrated twisted light generator,coupling free-space linear polarization into an optical vortex carrying 1 h orbital angular momentum(OAM),is also reported to validate the mode-control flexibility.This comprehensive method may motivate compact wavelength/polarization(de)multiplexers,multifunctional mode converters,on-chip OAM generators for photonic integrated circuits,and high-speed optical telecommunications.
基金This project received funding from the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation program(Grant Agreement No.724306)the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)(No.231447078-TRR142).
文摘Free from phase-matching constraints,plasmonic metasurfaces have contributed significantly to the control of optical nonlinearity and enhancement of nonlinear generation efficiency by engineering subwavelength meta-atoms.However,high dissipative losses and inevitable thermal heating limit their applicability in nonlinear nanophotonics.All-dielectric metasurfaces,supporting both electric and magnetic Mie-type resonances in their nanostructures,have appeared as a promising alternative to nonlinear plasmonics.High-index dielectric nanostructures,allowing additional magnetic resonances,can induce magnetic nonlinear effects,which,along with electric nonlinearities,increase the nonlinear conversion efficiency.In addition,low dissipative losses and high damage thresholds provide an extra degree of freedom for operating at high pump intensities,resulting in a considerable enhancement of the nonlinear processes.We discuss the current state of the art in the intensely developing area of all-dielectric nonlinear nanostructures and metasurfaces,including the role of Mie modes,Fano resonances,and anapole moments for harmonic generation,wave mixing,and ultrafast optical switching.Furthermore,we review the recent progress in the nonlinear phase and wavefront control using all-dielectric metasurfaces.We discuss techniques to realize alldielectric metasurfaces for multifunctional applications and generation of second-order nonlinear processes from complementary metal–oxide–semiconductor-compatible materials.
基金the National Key R&D Program of China(No.2019YFB1803904)in part by the National Natural Science Foundation of China(Grant Nos.61805104,11704156,61935013,61875076,and 61865014)in part by the Open Project of Wuhan National Laboratory for Optoelectronics,China(No.2018WNLOKF015).
文摘Dielectric metasurfaces-based planar optical spatial differentiator and edge detection have recently been proposed to play an important role in the parallel and fast image processing technology.With the development of dielectric metasurfaces of different geometries and resonance mechanisms,diverse on-chip spatial differentiators have been proposed by tailoring the dispersion characteristics of subwavelength structures.This review focuses on the basic principles and characteristic parameters of dielectric metasurfaces as first-and second-order spatial differentiators realized via the Green's function approach.The spatial bandwidth and polarization dependence are emphasized as key properties by comparing the optical transfer flinctions of metasurfaces for different incident wavevectors and polarizations.To present the operational capabilities of a two-dimensional spatial differentiator in image information acquisition,edge detection is described to illustrate the practicability of the device.As an application example,experimental demonstrations of edge detection for different biological cells and a flower mold are discussed,in which a spatial differentiator and objective lens or camera are integrated in three optical pathway configurations.The realization of spatial differentiators and edge detection with dielectric metasurfaces provides new opportunities for ultrafast information identification in biological imaging and machine vision.
基金This work was financially supported by the National Natural Science Foundation of China(Grant Nos.11704240,11734007,and 91850101)the National Key Research and Development Program of China(Grant Nos.2017YFA0303504 and 2017YFA0700201)+1 种基金the Shanghai Science and Technology Committee(Grant Nos.18QA1401800,20JC1414601,and 20JC1414602)the Shanghai East Scholar Plan,Fudan University-CIOMP Joint Fund(No.FC2018-006)。
文摘Dynamically controlling terahertz(THz)wavefronts in a designable fashion is highly desired in practice.However,available methods working at microwave frequencies do not work well in the THz regime due to lacking suitable tunable elements with submicrometer sizes.Here,instead of locally controlling individual meta-atoms in a THz metasurface,we show that rotating different layers(each exhibiting a particular phase profile)in a cascaded metadevice at different speeds can dynamically change the effective Jonesmatrix property of the whole device,thus enabling extraordinary manipulations on the wavefront and polarization characteristics of a THz beam impinging on the device.After illustrating our strategy based on model calculations,we experimentally demonstrate two proof-of-concept metadevices,each consisting of two carefully designed all-silicon transmissive metasurfaces exhibiting different phase profiles.Rotating two metasurfaces inside the fabricated devices at different speeds,we experimentally demonstrate that the first metadevice can efficiently redirect a normally incident THz beam to scan over a wide solid-angle range,while the second one can dynamically manipulate both the wavefront and polarization of a THz beam.Our results pave the way to achieving dynamic control of THz beams,which is useful in many applications,such as THz radar,and bio-and chemical sensing and imaging.
基金supported by the Australian Research Council(Grant Nos.DP200101168 and DP210101292)the International Technology Center Indo-Pacific(ITC IPAC)via Army Research Office(contract FA520923C0023).
文摘We review the physics and some applications of photonic structures designed for the realization of strong nonlinear chiroptical response.We pay much attention to the recent strategy of utilizing different types of optical resonances in metallic and dielectric subwavelength structures and metasurfaces,including surface plasmon resonances,Mie resonances,lattice-guided modes,and bound states in the continuum.We summarize earlier results and discuss more recent developments for achieving large circular dichroism combined with the high efficiency of nonlinear harmonic generation.