Based on the measurement of L-band ground-based microwave radiometer(ELBARA-III type)in the Qinghai-Tibet Plateau and theτ-ωradiative transfer model,this research evaluated the effects of four soil dielectric models...Based on the measurement of L-band ground-based microwave radiometer(ELBARA-III type)in the Qinghai-Tibet Plateau and theτ-ωradiative transfer model,this research evaluated the effects of four soil dielectric models,i.e.,Wang-Schmugge,Mironov,Dobson,and Four-phase,on the L-band microwave brightness temperature simulation and soil moisture retrieval.The results show that with the same vegetation and roughness parameterization scheme,the four soil dielectric models display obvious differences in microwave brightness temperature simulation.When the soil moisture is less than 0.23 m3/m3,the simulated microwave brightness temperature in Wang-Schmugge model is significantly different from that of the other three models,with maximum differences of horizontal polarization and vertical polarization reaching 8.0 K and 4.4 K,respectively;when the soil moisture is greater than 0.23 m3/m3,the simulated microwave brightness temperature of Four-phase significantly exceeds that of the other three models;when the soil moisture is saturated,maximum differences in simulated microwave brightness temperature with horizontal polarization and vertical polarization are 6.1 K and 4.8 K respectively,and the four soil dielectric models are more variable in the microwave brightness temperature simulation with horizontal polarization than that with vertical polarization.As for the soil moisture retrieval based on the four dielectric models,the comparison study shows that,under the condition of horizontal polarization,Wang-Schmugge model can reduce the degree of retrieved soil moisture underestimating the observed soil moisture more effectively than other parameterization schemes,while under the condition of vertical polarization,the Mironov model can reduce the degree of retrieved soil moisture overestimating the observed soil moisture.Finally,based on the Wang-Schmugge model and FengYun-3C observation data,the spatial distribution of soil moisture in the study area is retrieved.展开更多
This paper presents an overview of the history, modifications, characteristics, and applications of two well known dielectric function models ——the Forouhi-Bloomer model and the Tauc-Lorentz model——which have been...This paper presents an overview of the history, modifications, characteristics, and applications of two well known dielectric function models ——the Forouhi-Bloomer model and the Tauc-Lorentz model——which have been widely used for the extraction and parameterization of optical constants in semiconductors and dielectrics. Based on analysis of their inherent characteristics and comparison via demonstrative examples, deeper and wider usage of the two models is predicted.展开更多
The wavelength-dependent and frequency-dependent dielectric function of wurtzite-GaN is cMculated totally from fundamental parameters such as the lattice constant using Waiter's ab initio model. The errors occurring ...The wavelength-dependent and frequency-dependent dielectric function of wurtzite-GaN is cMculated totally from fundamental parameters such as the lattice constant using Waiter's ab initio model. The errors occurring in the cMculation are carefully reduced by/inear interpolation of energy data. The Kramers-Kronig transform of the real part of greater range is obtained by extrapolation of the reM part. The calculation is time-consuming but meaningful The long-wave results are similar to the experimental data of the photon and are useful for related investigation of properties of wide-gap semiconductors such as electron scattering like the Auger recombination and impact ionization.展开更多
In this paper,a non-thermal atmospheric pressure plasma jet at high streaming velocity operating with ambient air is highlighted.In the present technological approach,the employment of air poses a significant challeng...In this paper,a non-thermal atmospheric pressure plasma jet at high streaming velocity operating with ambient air is highlighted.In the present technological approach,the employment of air poses a significant challenge.The high oxygen concentration in air results in a reduced concentration of reactive species in combination with a short species lifetime.The plasma jet assembly presented here contains a special dielectric barrier with a high secondary emission coefficient.In this way,the electron density and in turn the density of reactive species is increased.In addition,the plasma jet assembly is equipped with a short electrode.This leads to a higher voltage across the discharge gap and in turn to an increased density of reactive plasma species.The plasma jet is formed within and emitted by a small conical nozzle.A high-speed gas flow with gas velocity of 340 m/s was achieved at the end of the nozzle.In the jet the concentration of toxic and unwanted neutral plasma species like O3 or NOx is significantly reduced because of the shorter residence time within the plasma.The range of short-lived active plasma species is in turn considerably enhanced.The jet efficiency and action range measured through the oxidation of a test surface were determined by measuring the increase of surface tension of a polypropylene substrate via contact angle measurements after plasma treatment.Numerical modeling of the plasma plume indicates that oxygen atoms are in fact the main active species in the plasma plume.展开更多
Aim at monitoring water pollution, especially the aquatic vegetation, the multilayer dielectric model based on incoherent method is established to analysis the brightness temperature of aquatic vegetation. A 3 mm radi...Aim at monitoring water pollution, especially the aquatic vegetation, the multilayer dielectric model based on incoherent method is established to analysis the brightness temperature of aquatic vegetation. A 3 mm radiometer is used to measure the radiant characteristics of water pollution. Compared to 3 layer dielectric model, the simulation result of multilayer dielectric model is in better accordance with the experimental data, which shows that the multilayer dielectric model can model aquatic vegetation’s radiant characteristics more precisely. This result shows that water has millimeter wave radiant characteristics of low brightness temperature, cold target compared to aquatic vegetation. Based on the study of water’s brightness temperatures and aquatic vegetation’s radiant characteristics, the radiant characteristics can be used to monitor aquatic vegetation.展开更多
Inspired by the nature,lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites(GHPCM)were successfully fabricated through an in situ strategy.The biological microstructure of lotus leaf wa...Inspired by the nature,lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites(GHPCM)were successfully fabricated through an in situ strategy.The biological microstructure of lotus leaf was well preserved after treatment.Different pores with gradient pore sizes ranging from 300 to 5μm were hierarchically distributed in the composites.In addition,the surface states of lotus leaf resulted in the Janus-like morphologies of MoS2.The GHPCM exhibit excellent electromagnetic wave absorption performance,with the minimum reflection loss of−50.1 dB at a thickness of 2.4 mm and the maximum effective bandwidth of 6.0 GHz at a thickness of 2.2 mm.The outstanding performance could be attributed to the synergy of conductive loss,polarization loss,and impedance matching.In particularly,we provided a brand-new dielectric sum-quotient model to analyze the electromagnetic performance of the non-magnetic material system.It suggests that the specific sum and quotient of permittivity are the key to keep reflection loss below−10 dB within a certain frequency range.Furthermore,based on the concept of material genetic engineering,the dielectric constant could be taken into account to seek for suitable materials with designable electromagnetic absorption performance.展开更多
An extended dielectric crack model is proposed to capture the effects of the physical properties of crack interior on crack-tip thermoelectroelastic fields.The typical crack-face boundary conditions can be retrieved b...An extended dielectric crack model is proposed to capture the effects of the physical properties of crack interior on crack-tip thermoelectroelastic fields.The typical crack-face boundary conditions can be retrieved by considering the limiting cases of electrical permeability and thermal conductivity inside a crack.Making use of the Fourier transform technique,the problem of a thermopiezoelectric strip weakened by a Griffith crack is investigated and transformed to solve the system of the second kind Fredholm integral equations with Cauchy kernel.The Lobatto-Chebyshev collocation method is used to form a nonlinear system of algebraic equations,which is solved by elaborating on an algorithm.The crack-tip thermoelectroelastic fields are determined by using the approximate solutions.Numerical simulations are carried out to show the variations of the fracture parameters of concern under applied thermoelectromechanical loads,the physical properties of the dielectric medium inside the crack and the geometry of the cracked thermopiezoelectric strip.Some comparisons with the experimental results are reported to reveal the effectiveness of the extended dielectric crack model.展开更多
A junctionless transistor is emerging as a most promising device for the future technology in the decananometer regime. To explore and exploit the behavior completely, the understanding of gate tunneling current is of...A junctionless transistor is emerging as a most promising device for the future technology in the decananometer regime. To explore and exploit the behavior completely, the understanding of gate tunneling current is of great importance. In this paper we have explored the gate tunneling current of a double gate junctionless transistor(DGJLT) for the first time through an analytical model, to meet the future requirement of expected high-k gate dielectric material that could replace SiO2. We therefore present the high-k gate stacked architecture of the DGJLT to minimize the gate tunneling current. This paper also demonstrates the impact of conduction band offset,workfunction difference and k-values on the tunneling current of the DGJLT.展开更多
The complex permittivity of targeted objects is an important factor that influences its microwave radiation and scattering characteristics.In the quantitative research of microwave remote sensing,the study of the diel...The complex permittivity of targeted objects is an important factor that influences its microwave radiation and scattering characteristics.In the quantitative research of microwave remote sensing,the study of the dielectric properties of the vegetation to establish the relationship between its specific physical parameters and complex permittivity is fundamental.In this study,six categories of vegetation samples were collected at the city of Zhangye,a key research area of the Heihe watershed allied telemetry experimental research.The vector network analyzer E8362B was used to measure the complex permittivity of these samples from 0.2 to 20 GHz by the coaxial probe technique.The research focused mainly on the corn leaves,and an empirical model was established between the gravimetric moisture and the real/imaginary parts of complex permittivity at the main frequency points of microwave sensors.Furthermore,the empirical model and the classical Debye-Cole model were compared and verified by the measured data collected from the Huailai County of Hebei Province.The results show that the newly- established empirical model is more accurate and more practical as compared to the traditional Debye-Cole model.展开更多
The existence, formation and content of water ice in the lunar permanently shaded region is one of the important questions for the current Moon study. On October 9, 2009, the LCROSS mission spacecraft impacted the Moo...The existence, formation and content of water ice in the lunar permanently shaded region is one of the important questions for the current Moon study. On October 9, 2009, the LCROSS mission spacecraft impacted the Moon, and the initial result verified the existence of water on the Moon. But the study on formation and content of water ice is still under debate. The existence of water ice can change the dielectric constants of the lunar regolith, and a microwave radiometer is most sensitive to the dielectric parameters. Based on this, in this paper, the radiation transfer model is improved according to the simulation results in high frequency. Then the mixture dielectric constant models, including Odelevsky model, Wagner and landau-Lifshitz model, Clau-sius model, Gruggeman-Hanai model, etc., are analyzed and compared. The analyzing results indicate that the biggest difference occurs between Lichtenecker model and the improved Dobson model. The values estimated by refractive model are the second biggest in all the models. And the results from Odelevsky model, strong fluctuation model, Wagner and Landau –Lifshitz model, Clausius model and Bruggeman-Hanai model are very near to each other. Thereafter, the relation between volume water ice content and microwave brightness temperature is constructed with Odelevsky mixing dielectric model and the improved radiative transfer simulation, and the volume water ice content in Cabeus crater is retrieved with the data from microwave radiometer onboard Chang’e-1 satellite. The results present that the improved radiative transfer model is proper for the brightness temperature simulation of the one infinite regolith layer in high frequency. The brightness temperature in Cabeus crater is 69.93 K (37 GHz), and the corresponding volume water ice content is about 2.8%.展开更多
A new solar selective absorbing coating of Mo/NiAlN/NiAlON/SiO_2 multilayer was prepared on stainless steel(SS) substrates by magnetron sputtering for solar thermal power applications. The optical constants and thickn...A new solar selective absorbing coating of Mo/NiAlN/NiAlON/SiO_2 multilayer was prepared on stainless steel(SS) substrates by magnetron sputtering for solar thermal power applications. The optical constants and thickness of individual layers were simulated using the Scout software based on the experimentally measured reflectance and transmittance spectra of individual layers. The coating of Mo/NiAlN/NiAlON/SiO_2 with an ideal solar absorptance(α) of 0.945 in the solar spectrum range was designed via the optical constants of each layer in the Scout software. The Mo/NiAlN/NiAlON/SiO_2 coating was deposited via the optimized layer thickness. A good spectral selectivity with absorptance(α=0.936) and emittance(ε=0.09, T=80 ℃) was obtained. This method, which incorporates the optical simulation with the related experiments, provides a convenient approach to obtain the ideal solar selective absorbing coatings.展开更多
The relaxor behavior of PLZT ferroelectric ceramics has been analyzed in a wide frequency and temperature ranges,below and above the temperature for the formation of the so-called polar nano-regions(PNRs).An approxima...The relaxor behavior of PLZT ferroelectric ceramics has been analyzed in a wide frequency and temperature ranges,below and above the temperature for the formation of the so-called polar nano-regions(PNRs).An approximation to the dynamical behavior of the PNRs has been discussed using Cole-Cole’s relaxation model and Jonscher’s Universal Relaxation Law.The analysis considers both the dipolar contribution and those ones associated with DC and AC electric conductivities,this latter not being previously reported in the literature for relaxor materials.The effectiveness of the developed model has been verified from the agreement between the experimental data and the theoretical calculations.This study also offers an indirect method to predict the DC component of the electrical conductivity.展开更多
基金This work was supported by the National Science Foundation of China(Grant Nos.42075065 and 91737103 and 41530529)the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(Grant No.2019QZKK0105).
文摘Based on the measurement of L-band ground-based microwave radiometer(ELBARA-III type)in the Qinghai-Tibet Plateau and theτ-ωradiative transfer model,this research evaluated the effects of four soil dielectric models,i.e.,Wang-Schmugge,Mironov,Dobson,and Four-phase,on the L-band microwave brightness temperature simulation and soil moisture retrieval.The results show that with the same vegetation and roughness parameterization scheme,the four soil dielectric models display obvious differences in microwave brightness temperature simulation.When the soil moisture is less than 0.23 m3/m3,the simulated microwave brightness temperature in Wang-Schmugge model is significantly different from that of the other three models,with maximum differences of horizontal polarization and vertical polarization reaching 8.0 K and 4.4 K,respectively;when the soil moisture is greater than 0.23 m3/m3,the simulated microwave brightness temperature of Four-phase significantly exceeds that of the other three models;when the soil moisture is saturated,maximum differences in simulated microwave brightness temperature with horizontal polarization and vertical polarization are 6.1 K and 4.8 K respectively,and the four soil dielectric models are more variable in the microwave brightness temperature simulation with horizontal polarization than that with vertical polarization.As for the soil moisture retrieval based on the four dielectric models,the comparison study shows that,under the condition of horizontal polarization,Wang-Schmugge model can reduce the degree of retrieved soil moisture underestimating the observed soil moisture more effectively than other parameterization schemes,while under the condition of vertical polarization,the Mironov model can reduce the degree of retrieved soil moisture overestimating the observed soil moisture.Finally,based on the Wang-Schmugge model and FengYun-3C observation data,the spatial distribution of soil moisture in the study area is retrieved.
文摘This paper presents an overview of the history, modifications, characteristics, and applications of two well known dielectric function models ——the Forouhi-Bloomer model and the Tauc-Lorentz model——which have been widely used for the extraction and parameterization of optical constants in semiconductors and dielectrics. Based on analysis of their inherent characteristics and comparison via demonstrative examples, deeper and wider usage of the two models is predicted.
基金Supported by the National Key Research and Development Program of China under Grant No 2016YFB0400102the National Basic Research Program of China under Grant Nos 2012CB3155605,2013CB632804,2014CB340002 and 2015CB351900+7 种基金the National Natural Science Foundation of China under Grant Nos 61574082,61210014,61321004,61307024 and 51561165012the High Technology Research and Development Program of China under Grant No 2015AA017101the Tsinghua University Student Research Training Projects under Grant No 1611T0157the Tsinghua University Initiative Scientific Research Program under Grant Nos 2013023Z09N and 2015THZ02-3the Open Fund of the State Key Laboratory on Integrated Optoelectronics under Grant No IOSKL2015KF10the CAEP Microsystem and THz Science and Technology Foundation under Grant No CAEPMT201505the Science Challenge Project under Grant No JCKY2016212A503the Guangdong Province Science and Technology Program under Grant No 2014B010121004
文摘The wavelength-dependent and frequency-dependent dielectric function of wurtzite-GaN is cMculated totally from fundamental parameters such as the lattice constant using Waiter's ab initio model. The errors occurring in the cMculation are carefully reduced by/inear interpolation of energy data. The Kramers-Kronig transform of the real part of greater range is obtained by extrapolation of the reM part. The calculation is time-consuming but meaningful The long-wave results are similar to the experimental data of the photon and are useful for related investigation of properties of wide-gap semiconductors such as electron scattering like the Auger recombination and impact ionization.
文摘In this paper,a non-thermal atmospheric pressure plasma jet at high streaming velocity operating with ambient air is highlighted.In the present technological approach,the employment of air poses a significant challenge.The high oxygen concentration in air results in a reduced concentration of reactive species in combination with a short species lifetime.The plasma jet assembly presented here contains a special dielectric barrier with a high secondary emission coefficient.In this way,the electron density and in turn the density of reactive species is increased.In addition,the plasma jet assembly is equipped with a short electrode.This leads to a higher voltage across the discharge gap and in turn to an increased density of reactive plasma species.The plasma jet is formed within and emitted by a small conical nozzle.A high-speed gas flow with gas velocity of 340 m/s was achieved at the end of the nozzle.In the jet the concentration of toxic and unwanted neutral plasma species like O3 or NOx is significantly reduced because of the shorter residence time within the plasma.The range of short-lived active plasma species is in turn considerably enhanced.The jet efficiency and action range measured through the oxidation of a test surface were determined by measuring the increase of surface tension of a polypropylene substrate via contact angle measurements after plasma treatment.Numerical modeling of the plasma plume indicates that oxygen atoms are in fact the main active species in the plasma plume.
文摘Aim at monitoring water pollution, especially the aquatic vegetation, the multilayer dielectric model based on incoherent method is established to analysis the brightness temperature of aquatic vegetation. A 3 mm radiometer is used to measure the radiant characteristics of water pollution. Compared to 3 layer dielectric model, the simulation result of multilayer dielectric model is in better accordance with the experimental data, which shows that the multilayer dielectric model can model aquatic vegetation’s radiant characteristics more precisely. This result shows that water has millimeter wave radiant characteristics of low brightness temperature, cold target compared to aquatic vegetation. Based on the study of water’s brightness temperatures and aquatic vegetation’s radiant characteristics, the radiant characteristics can be used to monitor aquatic vegetation.
基金This project was supported by the National Natural Science Foundation of China(Nos.51971162,U1933112,51671146)the Program of Shanghai Technology Research Leader(18XD1423800)the Fundamental Research Funds for the Central Universities(22120180096).
文摘Inspired by the nature,lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites(GHPCM)were successfully fabricated through an in situ strategy.The biological microstructure of lotus leaf was well preserved after treatment.Different pores with gradient pore sizes ranging from 300 to 5μm were hierarchically distributed in the composites.In addition,the surface states of lotus leaf resulted in the Janus-like morphologies of MoS2.The GHPCM exhibit excellent electromagnetic wave absorption performance,with the minimum reflection loss of−50.1 dB at a thickness of 2.4 mm and the maximum effective bandwidth of 6.0 GHz at a thickness of 2.2 mm.The outstanding performance could be attributed to the synergy of conductive loss,polarization loss,and impedance matching.In particularly,we provided a brand-new dielectric sum-quotient model to analyze the electromagnetic performance of the non-magnetic material system.It suggests that the specific sum and quotient of permittivity are the key to keep reflection loss below−10 dB within a certain frequency range.Furthermore,based on the concept of material genetic engineering,the dielectric constant could be taken into account to seek for suitable materials with designable electromagnetic absorption performance.
基金The work was supported by the National Natural Science Foundation of China(Nos.11872155 and 11362002)the Guangxi Natural Science Foundation(No.2016GXNSFAA380261)the innovation project of Guangxi Graduate Education(YCSW2019045).
文摘An extended dielectric crack model is proposed to capture the effects of the physical properties of crack interior on crack-tip thermoelectroelastic fields.The typical crack-face boundary conditions can be retrieved by considering the limiting cases of electrical permeability and thermal conductivity inside a crack.Making use of the Fourier transform technique,the problem of a thermopiezoelectric strip weakened by a Griffith crack is investigated and transformed to solve the system of the second kind Fredholm integral equations with Cauchy kernel.The Lobatto-Chebyshev collocation method is used to form a nonlinear system of algebraic equations,which is solved by elaborating on an algorithm.The crack-tip thermoelectroelastic fields are determined by using the approximate solutions.Numerical simulations are carried out to show the variations of the fracture parameters of concern under applied thermoelectromechanical loads,the physical properties of the dielectric medium inside the crack and the geometry of the cracked thermopiezoelectric strip.Some comparisons with the experimental results are reported to reveal the effectiveness of the extended dielectric crack model.
文摘A junctionless transistor is emerging as a most promising device for the future technology in the decananometer regime. To explore and exploit the behavior completely, the understanding of gate tunneling current is of great importance. In this paper we have explored the gate tunneling current of a double gate junctionless transistor(DGJLT) for the first time through an analytical model, to meet the future requirement of expected high-k gate dielectric material that could replace SiO2. We therefore present the high-k gate stacked architecture of the DGJLT to minimize the gate tunneling current. This paper also demonstrates the impact of conduction band offset,workfunction difference and k-values on the tunneling current of the DGJLT.
基金supported by the Chinese Ministry of Science and Technology(Grant Nos.2011AA120403&2010CB951403)the National Natural Science Foundation of China(Grant No.41101391)
文摘The complex permittivity of targeted objects is an important factor that influences its microwave radiation and scattering characteristics.In the quantitative research of microwave remote sensing,the study of the dielectric properties of the vegetation to establish the relationship between its specific physical parameters and complex permittivity is fundamental.In this study,six categories of vegetation samples were collected at the city of Zhangye,a key research area of the Heihe watershed allied telemetry experimental research.The vector network analyzer E8362B was used to measure the complex permittivity of these samples from 0.2 to 20 GHz by the coaxial probe technique.The research focused mainly on the corn leaves,and an empirical model was established between the gravimetric moisture and the real/imaginary parts of complex permittivity at the main frequency points of microwave sensors.Furthermore,the empirical model and the classical Debye-Cole model were compared and verified by the measured data collected from the Huailai County of Hebei Province.The results show that the newly- established empirical model is more accurate and more practical as compared to the traditional Debye-Cole model.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40901159 and40901187)Doctoral Fund of Ministry of Education of China (Grant No.20090061120055)+1 种基金the Basic Project Operating Fund of Jilin university(Grant No. 200903047)High-Tech Research and Development (863)Programme (Grant Nos. 2010AA122203 and 2008AA12A212)
文摘The existence, formation and content of water ice in the lunar permanently shaded region is one of the important questions for the current Moon study. On October 9, 2009, the LCROSS mission spacecraft impacted the Moon, and the initial result verified the existence of water on the Moon. But the study on formation and content of water ice is still under debate. The existence of water ice can change the dielectric constants of the lunar regolith, and a microwave radiometer is most sensitive to the dielectric parameters. Based on this, in this paper, the radiation transfer model is improved according to the simulation results in high frequency. Then the mixture dielectric constant models, including Odelevsky model, Wagner and landau-Lifshitz model, Clau-sius model, Gruggeman-Hanai model, etc., are analyzed and compared. The analyzing results indicate that the biggest difference occurs between Lichtenecker model and the improved Dobson model. The values estimated by refractive model are the second biggest in all the models. And the results from Odelevsky model, strong fluctuation model, Wagner and Landau –Lifshitz model, Clausius model and Bruggeman-Hanai model are very near to each other. Thereafter, the relation between volume water ice content and microwave brightness temperature is constructed with Odelevsky mixing dielectric model and the improved radiative transfer simulation, and the volume water ice content in Cabeus crater is retrieved with the data from microwave radiometer onboard Chang’e-1 satellite. The results present that the improved radiative transfer model is proper for the brightness temperature simulation of the one infinite regolith layer in high frequency. The brightness temperature in Cabeus crater is 69.93 K (37 GHz), and the corresponding volume water ice content is about 2.8%.
基金National Natural Science Foundation of China (No.51172012 and No.51472017)State Key Lab of Advance Metals and Materials (2014-ZD03)Foundation of Beijing Municipal Science & Technology Commission
文摘A new solar selective absorbing coating of Mo/NiAlN/NiAlON/SiO_2 multilayer was prepared on stainless steel(SS) substrates by magnetron sputtering for solar thermal power applications. The optical constants and thickness of individual layers were simulated using the Scout software based on the experimentally measured reflectance and transmittance spectra of individual layers. The coating of Mo/NiAlN/NiAlON/SiO_2 with an ideal solar absorptance(α) of 0.945 in the solar spectrum range was designed via the optical constants of each layer in the Scout software. The Mo/NiAlN/NiAlON/SiO_2 coating was deposited via the optimized layer thickness. A good spectral selectivity with absorptance(α=0.936) and emittance(ε=0.09, T=80 ℃) was obtained. This method, which incorporates the optical simulation with the related experiments, provides a convenient approach to obtain the ideal solar selective absorbing coatings.
基金The authors would like to acknowledge the Third World Academy of Sciences(RG/PHYS/LA Nos.99-050,02-225,and 05-043),the Abdus Salam International Centre for Theoretical Physics(ICTP),Trieste,Italy,for financially supporting the Latin-American Network of Ferroelectric Materials(NT-02)and the National Council of Scientific and Technological Development(CNPq)grant 303447/2019-2Minas Gerais Research Foundation(FAPEMIG)grants PPM-00661-16 and APQ-02875-18Coordenacao de Aperfeicoamento de Pessoal de Nível Superior-Brasil(CAPES)-Finance Code 001,and Sao Paulo Research Foundation(FAPESP)grants 06/60013-5 and 2018/24352-7 Brazilian agencies for the financial support.
文摘The relaxor behavior of PLZT ferroelectric ceramics has been analyzed in a wide frequency and temperature ranges,below and above the temperature for the formation of the so-called polar nano-regions(PNRs).An approximation to the dynamical behavior of the PNRs has been discussed using Cole-Cole’s relaxation model and Jonscher’s Universal Relaxation Law.The analysis considers both the dipolar contribution and those ones associated with DC and AC electric conductivities,this latter not being previously reported in the literature for relaxor materials.The effectiveness of the developed model has been verified from the agreement between the experimental data and the theoretical calculations.This study also offers an indirect method to predict the DC component of the electrical conductivity.