The aim of this study was to investigate the oxidation reactivity and behavior of exhaust particulate matter(PM)from diesel engines.PM samples from two diesel engines(1K,CY4102)with different emission levels were coll...The aim of this study was to investigate the oxidation reactivity and behavior of exhaust particulate matter(PM)from diesel engines.PM samples from two diesel engines(1K,CY4102)with different emission levels were collected by a thermophoretic system and a quartz filter.The oxidation reactivity,oxidation behaviors,and physicochemical properties of the PM samples were analyzed using thermogravimetric analysis(TGA),high-resolution transmission electron microscopy(HRTEM),Fourier-transform infrared spectrometry(FTIR),and Raman spectroscopy.The results showed that there was a great difference in the oxidation reactivity of soot particles emitted by the two different diesel engines.A qualitative analysis of the factors influencing oxidation reactivity showed that the nanostructure,degree of graphitization,and relative concentration of aliphatic C—H functional groups were the most important factors,whereas no significant correlation was found between the primary particle size and activation energy of the diesel soot.Based on the oxidation behavior analysis,the diesel soot particles exhibited both internal and surface oxidation modes during the oxidation process.Surface oxidation was dominant during the initial stage,and as oxidation progressed,the mode gradually changed to internal oxidation.Internal oxidation mode of soot particles from the 1K engine was significantly higher than that of CY4102.展开更多
The transition from non-renewable to renewable energy sources is a significant challenge of our time. In the fuel industry, oxygenated additives such as butanol are transforming conventional fuels into renewable biofu...The transition from non-renewable to renewable energy sources is a significant challenge of our time. In the fuel industry, oxygenated additives such as butanol are transforming conventional fuels into renewable biofuels. This technology has been utilized in reciprocating engines for decades. This paper reviews the viability of using an n-butanol blend as a short-term replacement for diesel by analyzing its physical and chemical properties, combustion, performance, and emission characteristics in compression ignition (CI) engines under various conditions, including variable load, speed, acceleration, and both stationary and transient cycles. N-Butanol exhibits higher viscosity, better lubricity, higher heating value, improved blend stability, enhanced cold-flow properties, and higher density. These factors influence spray formation, injection timing, atomization, and combustion characteristics. Its higher oxygen content improves the diffusion combustion stage and efficiency. Adding 5% and 10% n-butanol to diesel increases pressure and apparent heat release rate, slightly reduces temperature, and improves thermal efficiency, with mixed effects on CO and THC emissions and a notable decrease in particulate matter emissions. Fuel consumption increases, while the impact on NOx emissions varies. A 10% butanol blend is considered optimal for enhancing performance and reducing particulate emissions without significantly affecting NOx emissions. Blending up to 40% butanol with diesel does not require engine modifications or ECU recalibrations in engines calibrated for pure diesel. Due to its advantageous properties and performance, n-butanol is recommended as a superior alcohol-diesel blend than ethanol for short-term diesel replacement.展开更多
This study considers the effect of Eichhornia Crassipes Biodiesel(ECB)blends on the performances,combustion,and emission characteristics of a direct injection compression ignition engine operated in a dual-fuel mode(D...This study considers the effect of Eichhornia Crassipes Biodiesel(ECB)blends on the performances,combustion,and emission characteristics of a direct injection compression ignition engine operated in a dual-fuel mode(DFM)and equipped with an Exhaust gas recirculation technique(EGR).In particular,a single-cylinder,four-stroke,water-cooled diesel engine was utilized and four modes of fuel operation were considered:mode I,the engine operated with an ordinary diesel fuel;mode II,the engine operated with the addition of 2.4 L/min of lique-fied petroleum gas(LPG)and 20%EGR;mode III,20%ECB with 2.4 L/min LPG and 20%EGR;mode IV,40%ECB with 2.4 L/min LPG and 20%EGR.The operation conditions were constant engine speed(1500 rpm),var-iation of load(25%,50%,75%,and 100%),full load,with a compression ratio of 18,and a time injection of 23°BTDC(Before top died center).With regard to engine emissions,carbon dioxide(CO_(2)),carbon monoxide(CO),hydrocarbons(UHC),and nitrogen oxide(NOX)were measured using a gas analyzer.The smoke opacity was measured using an OPABOX smoke meter.By comparing the results related to the different modes with mode I at full load,the BTE(Brake thermal efficiency)increased by 20.17%,11.45%,and 12.66%with modes II,III,and IV,respectively.In comparison to the results for mode II,the BTE decreased due to the combustion of ECB blends by 7.26%and 6.24%for mode III and mode IV,respectively,at full load.In comparison to mode II,the Brake specific energy consumption(BSEC)increased with the ECB substitution.With ECB blends,there is a noticeable decrease in the CO,CO_(2),and UHC emissions at a partial load.Furthermore,the 20%ECB has no effect on CO emissions at full load.For modes II and IV,the CO_(2)increased by 33.33%and 19%,respectively,while the UHC emissions were reduced by 14.49%for mode III and 26.08%for mode IV.The smoke of mode III was lower by 7.21%,but for mode IV,it was higher by 12.37%.In addition,with mode III and mode IV,the NOx emissions increased by 30.50%and 18.80%,respectively.展开更多
Despite diesel engines being highly efficient, with low fuel consumption and reduced carbon dioxide emissions, they emit relatively high levels of particulate matter and oxides of nitrogen (NOx) due to high exhaust ga...Despite diesel engines being highly efficient, with low fuel consumption and reduced carbon dioxide emissions, they emit relatively high levels of particulate matter and oxides of nitrogen (NOx) due to high exhaust gas temperatures. Engine emissions show the quality and completeness of combustion. This paper aims to present the results of a study comparing exhaust emissions from a diesel and syngas powered engine. Syngas was produced from co-firing coal and biomass in a gasifier then cleaned, cooled and applied as an alternative fuel in an engine operated from 0 - 100% load. Exhaust-emissions were monitored at this load conditions. The exhaust-temperature was measured using thermocouples and the emission gases were analyzed using Testo 350. The emissions were lower and decreased as the engine load increased, except for sulphur dioxide and NOx. The study shows that levels of carbon monoxide, were higher in a range of 46.5 - 80.2%, while carbon dioxide was 3.3 - 18% higher compared to those from diesel. Hydrocarbon emissions were 480 and 1250 ppm for diesel and syngas respectively. The study reveals that the engine operates optimally at higher loads since hydrocarbons and oxides of carbon are low due to complete combustion at higher temperatures. Exhaust gas temperature was higher in the syngas fuel and increased as the engine load increased in the range of 455.83 - 480.03˚C which influenced the formation of NOx. NOx from diesel was found to be higher, ranging from 32.5 - 40.5%, compared to those from syngas with an engine load of 75%. The study observed that relative to diesel, the emissions of sulfur dioxide at 50% engine load were lower in a range of 23.7 - 57.1%. Emissions of hydrocarbons depended on the degree of substitution of diesel and engine load. The study therefore shows that, relative to diesel, emissions decreased when syngas was used with upgraded syngas from Prosporis juliflora presenting as the best alternative followed by Hyphanae compressa, and lastly rice husk. For optimal performance of the syngas fuelled engine, the study reports that the engine should be operated at engine loads above 50% with strategies on NOx emissions considered.展开更多
Biodiesel fuel is a potential alternative energy source for diesel engines due to its physiochemical characteristics relatively similar to those of traditional diesel fuel.In this study,the performance,emission,and co...Biodiesel fuel is a potential alternative energy source for diesel engines due to its physiochemical characteristics relatively similar to those of traditional diesel fuel.In this study,the performance,emission,and combustion features of a mono cylinder DI diesel engine are assessed using 20%Pumpkin seed methyl ester(PSOME20)and considering varying injection pressures(200,220,240,and 260 bar).The considered Pumpkin seed oil is converted into pumpkin biodiesel by transesterification and then used as fuel.The findings demonstrate that the Brake Thermal Efficiency(BTE)of PSOME20 can be raised by 1.68%,and the carbon monoxide(CO),hydrocarbon(HC),and smoke emanations can be lowered,while oxides of nitrogen(NOx)emissions are increased at an injection pressure(IP)of 240 bar compared to the standard IP of 200 bar.The cylinder pressure and the Heat Release Rate(HRR)become higher at 240 bar,whereas the ignition delay is shortened with respect to PSOME20 at a normal IP of 200 bar.展开更多
This paper aims to design a special exchanger to recover the exhaust gas heat of marine diesel engines used in small and medium-sized fishing vessels,which can then be used to heat water up to 55°C–85°C for...This paper aims to design a special exchanger to recover the exhaust gas heat of marine diesel engines used in small and medium-sized fishing vessels,which can then be used to heat water up to 55°C–85°C for membrane desalination devices to produce fresh water.A new exhaust-gas heat exchanger of fins and tube,with a reinforced heat transfer tube section,unequal spacing fins,a mixing zone between the fin groups and four routes tube bundle,was designed.Numerical simulations were also used to provide reference information for structural design.Experiments were carried out for exhaust gas waste heat recovery from a marine diesel engine in an engine test bench utilizing the heat exchanger.The experimental results show that the difference between heat absorption by water and heat reduction of exhaust gas is less than 6.5%.After the water flow rate was adjusted,the exhaust gas waste heat recovery efficiency was higher than 70%,and the exhaust-gas heat exchanger’s outlet water temperature was 55°C–85°C at different engine loads.This means that the heat recovery from the exhaust gas of a marine diesel engine meets the requirement to drive a membrane desalination device to produce fresh water for fishers working in small and medium-sized fishing vessels.展开更多
Proper design of exhaust systems in marine high-power turbocharged diesel engines can contribute to improve the low-speed performance of these engines and make the working conditions of the cylinders more uniform.Here...Proper design of exhaust systems in marine high-power turbocharged diesel engines can contribute to improve the low-speed performance of these engines and make the working conditions of the cylinders more uniform.Here a high-power marine 16-cylinder V-type turbocharged diesel engine is simulated using the GT-Power software.The results reveal the differences induced by different exhaust system structures,such as an 8-cylinder-inpipe exhaust system with single/double superchargers and a 4-cylinder-in-pipe exhaust system with a single supercharger.After a comparative analysis,the 8-cylinder type with double superchargers is determined to be the optimal solution,and the structure of the exhaust system is further optimized.The simulations show that the optimized maximum exhaust temperature difference among cylinders is reduced by 66%.Finally,the simulation results and the optimized performance of the designed exhaust system are verified through experiments.展开更多
Increasing global environmental issues and depleting fossil fuel reserves has necessitated the need for alternative and sustainable fuel. In this paper, the effects of biodiesel and its blend on engine emission and pe...Increasing global environmental issues and depleting fossil fuel reserves has necessitated the need for alternative and sustainable fuel. In this paper, the effects of biodiesel and its blend on engine emission and performance characteristics in an internal combustion engine were analyzed. Biodiesel derived from the transesterification of raw palm oil was blended with diesel fuel at different proportions designated as PO5 (5% Biodiesel and 95% Diesel), PO10 (10% Biodiesel and 90% Diesel), PO15 (15% Biodiesel and 85% Diesel), PO20 (20% Biodiesel and 80% Diesel), PO50 (50% Biodiesel and 50% Diesel), PO85 (85% Biodiesel and 15% Diesel), and PO100 (100% Biodiesel). A Lombardini 2-cylinder, four-stroke direct injection diesel engine with a compression ratio of 22.8 was developed using Ricardo Wave software in which diesel, palm oil biodiesel blends and pure biodiesel are used in the model, and the obtained results were analysed and presented. The simulation was done under varying engine speeds of 1200 rpm to 3200 rpm at full load condition. Biodiesel and its blends are more environment-friendly and non-toxic when compared to diesel fuel;it also improves the mechanical efficiency of the engines, and above all can also lead to a reduction in poverty among rural dwellers. The obtained results showed that brake specific fuel consumption and brake thermal efficiency increased with palm oil biodiesel blends as compared to diesel fuel which might be a result of biodiesel’s lower heating value, and the increase in thermal energy may be a result of the oxygenation of the biodiesel blend as compared to pure diesel. In terms of brake torque, palm oil biodiesel blends were lesser than diesel fuel. The CO, HC, and NO<sub>x</sub> emissions of palm oil biodiesel blends decreased significantly compared to that of pure diesel. From this study, palm oil biodiesel emits lesser emissions than diesel fuel and its performance characteristics are similar to diesel fuel. Therefore, palm oil biodiesel can be used without any modifications directly in a diesel engine. In addition, it can also be used as blends as an alternative and sustainable fuel, decreasing air pollution, and increasing environmental sustainability.展开更多
The electrical instability that frequently distinguishes the isolated networks and depends on diesel generators to supply their energy requirements leads to an operation of the diesel generator in a transient dynamic ...The electrical instability that frequently distinguishes the isolated networks and depends on diesel generators to supply their energy requirements leads to an operation of the diesel generator in a transient dynamic condition and/or at low loads. In addition, extended operation of the diesel generator at partial load develops the condensation of combustion residues on the engine cylinder walls, which, after a certain time, increases friction, reduces the efficiency of the equipment and increases its fuel consumption. On the other hand, recent regulatory changes have led to ever more stringent and evolving emission standards. Among these, the International Maritime Organization (IMO) and the Environmental Protection Agency (EPA) have implemented emission standards in order to reduce exhaust gas emitted by marine diesel engines. To phase lower emission engines as soon as possible, a Tier system was adopted. This paper presents a literature review of existing technologies available to optimize the energy performance of diesel engines and diesel generators in order to reduce the cost of electricity, to increase the diesel engine efficiency and to decrease their fuel consumption and greenhouse gases (GHG) emissions. The proposed optimization methodologies are based on the application of Pre-treatment, Internal treatment and Post-treatment technologies for diesel engines and on the application of mechanical and electrical technologies for diesel power generators (DPGs). The list of references given at the end of the paper should offer aids for students and researchers working in this field.展开更多
This paper investigates the vibration characteristics of diesel engine cylinder heads by means of the time series method. With the concept of "Assumed System",the vibration transfer function of real cylinder...This paper investigates the vibration characteristics of diesel engine cylinder heads by means of the time series method. With the concept of "Assumed System",the vibration transfer function of real cylinder head structures is established using the autoregressive-moving average models(ARMA models) of cylinder head surface vibration signals. Then this transfer function is successfully used to reconstruct the gas pressure trace inside the cylinder from measured cylinder head vibration signals. This offers an effective means for diesel engine cylinder pressure detection and condition monitoring.展开更多
Energy efficiency and environmental impact have become dominant topics in internal combustion engines development. Among many strategies to improve power and emissions outputs from diesel engines is the partial mix of...Energy efficiency and environmental impact have become dominant topics in internal combustion engines development. Among many strategies to improve power and emissions outputs from diesel engines is the partial mix of hydrogen and air as fresh charge components to form extremely lean and homogenous mixture, which resist the spontaneous combustion, while diesel fuel is injected directly inside combustion chamber using the conventional fuel injection systems. This contribution presents an analytical and experimental investigation for the effects of adding hydrogen on diesel engines power output and the reduction of emissions. Parametric analysis is used based on lamped parameters modeling of intake manifold to estimate in cylinder trapped charge. The fuel energy flow to engine cylinders is compared for a range of loads and concentrations to simulate relevant case studies. Diesel fuel reduction for significant range of part-load operation can be achieved by introducing hydrogen, along with power improvement emission reductions are affected positively as well. This is achievable without compromising the engine maximum efficiency, given that most engines are operated at small and part-load during normal driving conditions, which allow for introducing more hydrogen instead of large quantities of excess air during such operation conditions that also can be further improved by charge boosting.展开更多
A CAD system for the cylinder head is developed. As an integrated system, it can be used in 3 D modeling, 2 D drawing and finite element structural analysis and optimization. The key problems in system designing are...A CAD system for the cylinder head is developed. As an integrated system, it can be used in 3 D modeling, 2 D drawing and finite element structural analysis and optimization. The key problems in system designing are introduced. Design flow, system structure and how to solve the key problems are focused on. All of those would form the base for more research on how to use the modern CAD technology to design complex engine parts. And it is also a good example of using the modern CAD technology.展开更多
Numerous vibration-based techniques are rarely used in diesel engines fault diagnosis in a direct way, due to the surface vibration signals of diesel engines with the complex non-stationary and nonlinear time-varying ...Numerous vibration-based techniques are rarely used in diesel engines fault diagnosis in a direct way, due to the surface vibration signals of diesel engines with the complex non-stationary and nonlinear time-varying fea- tures. To investigate the fault diagnosis of diesel engines, fractal correlation dimension, wavelet energy and entropy as features reflecting the diesel engine fault fractal and energy characteristics are extracted from the decomposed signals through analyzing vibration acceleration signals derived from the cylinder head in seven different states of valve train. An intelligent fault detector FastICA-SVM is applied for diesel engine fault diagnosis and classification. The results demonstrate that FastlCA-SVM achieves higher classification accuracy and makes better general- ization performance in small samples recognition. Besides, the fractal correlation dimension and wavelet energy and entropy as the special features of diesel engine vibration signal are considered as input vectors of classifier FastlCA- SVM and could produce the excellent classification results. The proposed methodology improves the accuracy of fea- ture extraction and the fault diagnosis of diesel engines.展开更多
In this study, the efforts to reduce NOx and particulate matter (PM) emissions from a diesel engine using both ethanol-selective catalytic reduction (SCR) of NOx over an Ag/Al2O3 catalyst and a biodiesel-ethanol-d...In this study, the efforts to reduce NOx and particulate matter (PM) emissions from a diesel engine using both ethanol-selective catalytic reduction (SCR) of NOx over an Ag/Al2O3 catalyst and a biodiesel-ethanol-diesel fuel blend (BE-diesel) on an engine bench test are discussed. Compared with diesel fuel, use of BE-diesel increased PM emissions by 14% due to the increase in the soluble organic fraction (SOF) of PM, but it greatly reduced the Bosch smoke number by 60%-80% according to the results from 13-mode test of European Stationary Cycle (ESC) test. The SCR catalyst was effective in NOx reduction by ethanol, and the NOx conversion was approximately 73%. Total hydrocarbons (THC) and CO emissions increased significantly during the SCR of NOx process. Two diesel oxidation catalyst (DOC) assemblies were used after Ag/Al2O3 converter to remove CO and HC. Different oxidation catalyst showed opposite effect on PM emission. The PM composition analysis revealed that the net effect of oxidation catalyst on total PM was an integrative effect on SOF reduction and sulfate formation of PM. The engine bench test results indicated that the combination of BE-diesel and a SCR catalyst assembly could provide benefits for NOx and PM emissions control even without using diesel particle filters (DPFs).展开更多
The demands for improved fuel economy,performance and emissions continue to pose challenges for engine designers and the materials they choose. This is particularly true for modern diesel engines,where the primary pat...The demands for improved fuel economy,performance and emissions continue to pose challenges for engine designers and the materials they choose. This is particularly true for modern diesel engines,where the primary path to achieving improved engine performance and emissions is to increase the Peak Firing Pressure in the combustion chamber. The resulting increase in thermal and mechanical loading has required a change from conventional grey cast iron to Compacted Graphite Iron (CGI) in order to satisfy durability requirements without increasing the size or the weight of the engines. With at least 75% higher tensile strength,45% higher stiffness and approximately double the fatigue strength of conventional grey cast iron,CGI satisfies durability requirements and also provides the dimensional stability required to meet emissions legislation throughout the life of the engine. Currently,there are no CGI diesel engines running on the roads in North America. This is set to change considerably as new commercial vehicle and pick-up SUV diesel engines are launched with CGI cylinder blocks in 2008 and 2009. These initial programs will provide over 2 million CGI diesel engines when ramped to mature volume,potentially accounting for 10%-15% of the North American passenger vehicle fleet within the next four years.展开更多
Combustion noise takes large proportion in diesel engine noise and the studies of its influence factors play an important role in noise reduction. Engine noise and cylinder pressure measurement experiments were carrie...Combustion noise takes large proportion in diesel engine noise and the studies of its influence factors play an important role in noise reduction. Engine noise and cylinder pressure measurement experiments were carried out. And the improved attenuation curves were obtained, by which the engine noise was predicted. The effect of fuel injection parameters in combustion noise was investigated during the combustion process. At last, the method combining single variable optimization and multivariate combination was introduced to online optimize the combustion noise. The results show that injection parameters can affect the cylinder pressure rise rate and heat release rate, and consequently affect the cylinder pressure load and pressure oscillation to influence the combustion noise. Among these parameters, main injection advance angle has the greatest influence on the combustion noise, while the pilot injection interval time takes the second place, and the pilot injection quantity is of minimal impact. After the optimal design of the combustion noise, the average sound pressure level of the engine is distinctly reduced by 1.0 d B(A) generally. Meanwhile, the power, emission and economy performances are ensured.展开更多
Optimization procedures are required to minimize the amount of fuel consumption and exhaust emissions from marine engines.This study discusses the procedures to optimize the performance of any marine engine implemente...Optimization procedures are required to minimize the amount of fuel consumption and exhaust emissions from marine engines.This study discusses the procedures to optimize the performance of any marine engine implemented in a 0D/1D numerical model in order to achieve lower values of exhaust emissions.From that point,an extension of previous simulation researches is presented to calculate the amount of SOx emissions from two marine diesel engines along their load diagrams based on the percentage of sulfur in the marine fuel used.The variations of SOx emissions are computed in g/k W·h and in parts per million(ppm)as functions of the optimized parameters:brake specific fuel consumption and the amount of air-fuel ratio respectively.Then,a surrogate model-based response surface methodology is used to generate polynomial equations to estimate the amount of SOx emissions as functions of engine speed and load.These developed non-dimensional equations can be further used directly to assess the value of SOx emissions for different percentages of sulfur of the selected or similar engines to be used in different marine applications.展开更多
The multi-body dynamics model of the X6170ZC diesel is established to analyze vibration and acoustic noise. The high quality finite element and simulation models are developed, and nonlinear springs are used to imitat...The multi-body dynamics model of the X6170ZC diesel is established to analyze vibration and acoustic noise. The high quality finite element and simulation models are developed, and nonlinear springs are used to imitate the joints of engine components. The acoustic behavior of the structure is evaluated by the velocity of surface vibration. The noise level is reduced by improving the structure of the engine. The result shows that the surface vibration velocity level is decreased about 3.7 dB (A) at 1 600 Hz after the optimization. Based on the contrast between the two structures, it is concluded that through structure design the combined noise can be reduced, and the virtual design mode of diesel engines is feasible.展开更多
In order to effectively implement DPF(Diesel Particulate Filters)regeneration control,thermal management of exhaust products before and inside Diesel Oxidation Catalyst(DOC)is necessary.In the present study,the Influe...In order to effectively implement DPF(Diesel Particulate Filters)regeneration control,thermal management of exhaust products before and inside Diesel Oxidation Catalyst(DOC)is necessary.In the present study,the Influence of the intake throttle valve and late post injection process on temperature rise inside DOC is analyzed through engine bench tests.The steady experiment results show that adjustment of the intake throttle valve can effectively increase exhaust temperature before DOC;in particular,with intake throttle valve opening at 20%,temperature before DOC can be increased by about 170℃ with respect to the full opening.An increase in the late post injection quantity can produce a significant rise of the temperature inside DOC,however its impact on the exhaust temperature before DOC is relatively limited.As the late post injection quantity increases,Hydrocarbon(HC)emissions also grow;in the present work it is shown that with a proper injection quantity,a considerable temperature increase inside the DOC can be obtained with relatively low HC emission.More specifically,with the intake throttle valve at 30%and DOC reaching ignition temperature as the late post injection quantity is increased,the exhaust temperature after DOC can be made larger than 550℃,adequate for DPF active regeneration.展开更多
This study paves the way on reducing smoke emission and NO_x emissions of research diesel engine by detailing the e ect of water addition in biodiesel. Fuel samples were prepared with di erent concentrations of water ...This study paves the way on reducing smoke emission and NO_x emissions of research diesel engine by detailing the e ect of water addition in biodiesel. Fuel samples were prepared with di erent concentrations of water in orange peel oil biodiesel(94% waste orange peel oil biodiesel + 4% water + 2% Span 80(WOPOBDE1) and 90% waste orange peel oil biodiesel + 8% water + 2% Span 80(WOPOBDE2). Span 80 was employed as a nonionic surfactant, which emulsifies water in biodiesel. Experimental results revealed that the nitrogen oxides and smoke emission of orange peel oil biodiesel emulsion were reduced by 11%–19% and 3%–21%, respectively, compared to that of neat orange peel oil biodiesel(WOPOBD). In addition, the introduction of orange peel oil–water emulsions in the diesel engine considerably reduced the emissions of unburned hydrocarbons and carbon monoxide. The overall hydrocarbon emission of WOPOBDE2 was 12.2% lower than that of WOPOBD and 16.3% lower than that of diesel. The overall CO emission of WOPOBDE2 was 17% lower than that of base fuel(WOPOBD) and 21.8% lower than that of diesel. Experimental results revealed that modified fuel had higher brake thermal e ciency and lower brake specific fuel consumption than that of base fuel at all engine brake power levels.展开更多
基金the SINOPEC(124015)and the State Key Laboratory of Engines at Tianjin University(No.K2022-06).
文摘The aim of this study was to investigate the oxidation reactivity and behavior of exhaust particulate matter(PM)from diesel engines.PM samples from two diesel engines(1K,CY4102)with different emission levels were collected by a thermophoretic system and a quartz filter.The oxidation reactivity,oxidation behaviors,and physicochemical properties of the PM samples were analyzed using thermogravimetric analysis(TGA),high-resolution transmission electron microscopy(HRTEM),Fourier-transform infrared spectrometry(FTIR),and Raman spectroscopy.The results showed that there was a great difference in the oxidation reactivity of soot particles emitted by the two different diesel engines.A qualitative analysis of the factors influencing oxidation reactivity showed that the nanostructure,degree of graphitization,and relative concentration of aliphatic C—H functional groups were the most important factors,whereas no significant correlation was found between the primary particle size and activation energy of the diesel soot.Based on the oxidation behavior analysis,the diesel soot particles exhibited both internal and surface oxidation modes during the oxidation process.Surface oxidation was dominant during the initial stage,and as oxidation progressed,the mode gradually changed to internal oxidation.Internal oxidation mode of soot particles from the 1K engine was significantly higher than that of CY4102.
文摘The transition from non-renewable to renewable energy sources is a significant challenge of our time. In the fuel industry, oxygenated additives such as butanol are transforming conventional fuels into renewable biofuels. This technology has been utilized in reciprocating engines for decades. This paper reviews the viability of using an n-butanol blend as a short-term replacement for diesel by analyzing its physical and chemical properties, combustion, performance, and emission characteristics in compression ignition (CI) engines under various conditions, including variable load, speed, acceleration, and both stationary and transient cycles. N-Butanol exhibits higher viscosity, better lubricity, higher heating value, improved blend stability, enhanced cold-flow properties, and higher density. These factors influence spray formation, injection timing, atomization, and combustion characteristics. Its higher oxygen content improves the diffusion combustion stage and efficiency. Adding 5% and 10% n-butanol to diesel increases pressure and apparent heat release rate, slightly reduces temperature, and improves thermal efficiency, with mixed effects on CO and THC emissions and a notable decrease in particulate matter emissions. Fuel consumption increases, while the impact on NOx emissions varies. A 10% butanol blend is considered optimal for enhancing performance and reducing particulate emissions without significantly affecting NOx emissions. Blending up to 40% butanol with diesel does not require engine modifications or ECU recalibrations in engines calibrated for pure diesel. Due to its advantageous properties and performance, n-butanol is recommended as a superior alcohol-diesel blend than ethanol for short-term diesel replacement.
文摘This study considers the effect of Eichhornia Crassipes Biodiesel(ECB)blends on the performances,combustion,and emission characteristics of a direct injection compression ignition engine operated in a dual-fuel mode(DFM)and equipped with an Exhaust gas recirculation technique(EGR).In particular,a single-cylinder,four-stroke,water-cooled diesel engine was utilized and four modes of fuel operation were considered:mode I,the engine operated with an ordinary diesel fuel;mode II,the engine operated with the addition of 2.4 L/min of lique-fied petroleum gas(LPG)and 20%EGR;mode III,20%ECB with 2.4 L/min LPG and 20%EGR;mode IV,40%ECB with 2.4 L/min LPG and 20%EGR.The operation conditions were constant engine speed(1500 rpm),var-iation of load(25%,50%,75%,and 100%),full load,with a compression ratio of 18,and a time injection of 23°BTDC(Before top died center).With regard to engine emissions,carbon dioxide(CO_(2)),carbon monoxide(CO),hydrocarbons(UHC),and nitrogen oxide(NOX)were measured using a gas analyzer.The smoke opacity was measured using an OPABOX smoke meter.By comparing the results related to the different modes with mode I at full load,the BTE(Brake thermal efficiency)increased by 20.17%,11.45%,and 12.66%with modes II,III,and IV,respectively.In comparison to the results for mode II,the BTE decreased due to the combustion of ECB blends by 7.26%and 6.24%for mode III and mode IV,respectively,at full load.In comparison to mode II,the Brake specific energy consumption(BSEC)increased with the ECB substitution.With ECB blends,there is a noticeable decrease in the CO,CO_(2),and UHC emissions at a partial load.Furthermore,the 20%ECB has no effect on CO emissions at full load.For modes II and IV,the CO_(2)increased by 33.33%and 19%,respectively,while the UHC emissions were reduced by 14.49%for mode III and 26.08%for mode IV.The smoke of mode III was lower by 7.21%,but for mode IV,it was higher by 12.37%.In addition,with mode III and mode IV,the NOx emissions increased by 30.50%and 18.80%,respectively.
文摘Despite diesel engines being highly efficient, with low fuel consumption and reduced carbon dioxide emissions, they emit relatively high levels of particulate matter and oxides of nitrogen (NOx) due to high exhaust gas temperatures. Engine emissions show the quality and completeness of combustion. This paper aims to present the results of a study comparing exhaust emissions from a diesel and syngas powered engine. Syngas was produced from co-firing coal and biomass in a gasifier then cleaned, cooled and applied as an alternative fuel in an engine operated from 0 - 100% load. Exhaust-emissions were monitored at this load conditions. The exhaust-temperature was measured using thermocouples and the emission gases were analyzed using Testo 350. The emissions were lower and decreased as the engine load increased, except for sulphur dioxide and NOx. The study shows that levels of carbon monoxide, were higher in a range of 46.5 - 80.2%, while carbon dioxide was 3.3 - 18% higher compared to those from diesel. Hydrocarbon emissions were 480 and 1250 ppm for diesel and syngas respectively. The study reveals that the engine operates optimally at higher loads since hydrocarbons and oxides of carbon are low due to complete combustion at higher temperatures. Exhaust gas temperature was higher in the syngas fuel and increased as the engine load increased in the range of 455.83 - 480.03˚C which influenced the formation of NOx. NOx from diesel was found to be higher, ranging from 32.5 - 40.5%, compared to those from syngas with an engine load of 75%. The study observed that relative to diesel, the emissions of sulfur dioxide at 50% engine load were lower in a range of 23.7 - 57.1%. Emissions of hydrocarbons depended on the degree of substitution of diesel and engine load. The study therefore shows that, relative to diesel, emissions decreased when syngas was used with upgraded syngas from Prosporis juliflora presenting as the best alternative followed by Hyphanae compressa, and lastly rice husk. For optimal performance of the syngas fuelled engine, the study reports that the engine should be operated at engine loads above 50% with strategies on NOx emissions considered.
文摘Biodiesel fuel is a potential alternative energy source for diesel engines due to its physiochemical characteristics relatively similar to those of traditional diesel fuel.In this study,the performance,emission,and combustion features of a mono cylinder DI diesel engine are assessed using 20%Pumpkin seed methyl ester(PSOME20)and considering varying injection pressures(200,220,240,and 260 bar).The considered Pumpkin seed oil is converted into pumpkin biodiesel by transesterification and then used as fuel.The findings demonstrate that the Brake Thermal Efficiency(BTE)of PSOME20 can be raised by 1.68%,and the carbon monoxide(CO),hydrocarbon(HC),and smoke emanations can be lowered,while oxides of nitrogen(NOx)emissions are increased at an injection pressure(IP)of 240 bar compared to the standard IP of 200 bar.The cylinder pressure and the Heat Release Rate(HRR)become higher at 240 bar,whereas the ignition delay is shortened with respect to PSOME20 at a normal IP of 200 bar.
基金supported by the National Key Research and Development Program of China[Grant No.2017YFE0116100]the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China[Grant No.KYCX20_2821].
文摘This paper aims to design a special exchanger to recover the exhaust gas heat of marine diesel engines used in small and medium-sized fishing vessels,which can then be used to heat water up to 55°C–85°C for membrane desalination devices to produce fresh water.A new exhaust-gas heat exchanger of fins and tube,with a reinforced heat transfer tube section,unequal spacing fins,a mixing zone between the fin groups and four routes tube bundle,was designed.Numerical simulations were also used to provide reference information for structural design.Experiments were carried out for exhaust gas waste heat recovery from a marine diesel engine in an engine test bench utilizing the heat exchanger.The experimental results show that the difference between heat absorption by water and heat reduction of exhaust gas is less than 6.5%.After the water flow rate was adjusted,the exhaust gas waste heat recovery efficiency was higher than 70%,and the exhaust-gas heat exchanger’s outlet water temperature was 55°C–85°C at different engine loads.This means that the heat recovery from the exhaust gas of a marine diesel engine meets the requirement to drive a membrane desalination device to produce fresh water for fishers working in small and medium-sized fishing vessels.
基金the High-Tech Ship Scientific Research Project[MC-201501-D01-01].
文摘Proper design of exhaust systems in marine high-power turbocharged diesel engines can contribute to improve the low-speed performance of these engines and make the working conditions of the cylinders more uniform.Here a high-power marine 16-cylinder V-type turbocharged diesel engine is simulated using the GT-Power software.The results reveal the differences induced by different exhaust system structures,such as an 8-cylinder-inpipe exhaust system with single/double superchargers and a 4-cylinder-in-pipe exhaust system with a single supercharger.After a comparative analysis,the 8-cylinder type with double superchargers is determined to be the optimal solution,and the structure of the exhaust system is further optimized.The simulations show that the optimized maximum exhaust temperature difference among cylinders is reduced by 66%.Finally,the simulation results and the optimized performance of the designed exhaust system are verified through experiments.
文摘Increasing global environmental issues and depleting fossil fuel reserves has necessitated the need for alternative and sustainable fuel. In this paper, the effects of biodiesel and its blend on engine emission and performance characteristics in an internal combustion engine were analyzed. Biodiesel derived from the transesterification of raw palm oil was blended with diesel fuel at different proportions designated as PO5 (5% Biodiesel and 95% Diesel), PO10 (10% Biodiesel and 90% Diesel), PO15 (15% Biodiesel and 85% Diesel), PO20 (20% Biodiesel and 80% Diesel), PO50 (50% Biodiesel and 50% Diesel), PO85 (85% Biodiesel and 15% Diesel), and PO100 (100% Biodiesel). A Lombardini 2-cylinder, four-stroke direct injection diesel engine with a compression ratio of 22.8 was developed using Ricardo Wave software in which diesel, palm oil biodiesel blends and pure biodiesel are used in the model, and the obtained results were analysed and presented. The simulation was done under varying engine speeds of 1200 rpm to 3200 rpm at full load condition. Biodiesel and its blends are more environment-friendly and non-toxic when compared to diesel fuel;it also improves the mechanical efficiency of the engines, and above all can also lead to a reduction in poverty among rural dwellers. The obtained results showed that brake specific fuel consumption and brake thermal efficiency increased with palm oil biodiesel blends as compared to diesel fuel which might be a result of biodiesel’s lower heating value, and the increase in thermal energy may be a result of the oxygenation of the biodiesel blend as compared to pure diesel. In terms of brake torque, palm oil biodiesel blends were lesser than diesel fuel. The CO, HC, and NO<sub>x</sub> emissions of palm oil biodiesel blends decreased significantly compared to that of pure diesel. From this study, palm oil biodiesel emits lesser emissions than diesel fuel and its performance characteristics are similar to diesel fuel. Therefore, palm oil biodiesel can be used without any modifications directly in a diesel engine. In addition, it can also be used as blends as an alternative and sustainable fuel, decreasing air pollution, and increasing environmental sustainability.
文摘The electrical instability that frequently distinguishes the isolated networks and depends on diesel generators to supply their energy requirements leads to an operation of the diesel generator in a transient dynamic condition and/or at low loads. In addition, extended operation of the diesel generator at partial load develops the condensation of combustion residues on the engine cylinder walls, which, after a certain time, increases friction, reduces the efficiency of the equipment and increases its fuel consumption. On the other hand, recent regulatory changes have led to ever more stringent and evolving emission standards. Among these, the International Maritime Organization (IMO) and the Environmental Protection Agency (EPA) have implemented emission standards in order to reduce exhaust gas emitted by marine diesel engines. To phase lower emission engines as soon as possible, a Tier system was adopted. This paper presents a literature review of existing technologies available to optimize the energy performance of diesel engines and diesel generators in order to reduce the cost of electricity, to increase the diesel engine efficiency and to decrease their fuel consumption and greenhouse gases (GHG) emissions. The proposed optimization methodologies are based on the application of Pre-treatment, Internal treatment and Post-treatment technologies for diesel engines and on the application of mechanical and electrical technologies for diesel power generators (DPGs). The list of references given at the end of the paper should offer aids for students and researchers working in this field.
基金Supported by the Shanghai Municipal Education Commission Foundation under Grant No. 06FZ039.
文摘This paper investigates the vibration characteristics of diesel engine cylinder heads by means of the time series method. With the concept of "Assumed System",the vibration transfer function of real cylinder head structures is established using the autoregressive-moving average models(ARMA models) of cylinder head surface vibration signals. Then this transfer function is successfully used to reconstruct the gas pressure trace inside the cylinder from measured cylinder head vibration signals. This offers an effective means for diesel engine cylinder pressure detection and condition monitoring.
文摘Energy efficiency and environmental impact have become dominant topics in internal combustion engines development. Among many strategies to improve power and emissions outputs from diesel engines is the partial mix of hydrogen and air as fresh charge components to form extremely lean and homogenous mixture, which resist the spontaneous combustion, while diesel fuel is injected directly inside combustion chamber using the conventional fuel injection systems. This contribution presents an analytical and experimental investigation for the effects of adding hydrogen on diesel engines power output and the reduction of emissions. Parametric analysis is used based on lamped parameters modeling of intake manifold to estimate in cylinder trapped charge. The fuel energy flow to engine cylinders is compared for a range of loads and concentrations to simulate relevant case studies. Diesel fuel reduction for significant range of part-load operation can be achieved by introducing hydrogen, along with power improvement emission reductions are affected positively as well. This is achievable without compromising the engine maximum efficiency, given that most engines are operated at small and part-load during normal driving conditions, which allow for introducing more hydrogen instead of large quantities of excess air during such operation conditions that also can be further improved by charge boosting.
文摘A CAD system for the cylinder head is developed. As an integrated system, it can be used in 3 D modeling, 2 D drawing and finite element structural analysis and optimization. The key problems in system designing are introduced. Design flow, system structure and how to solve the key problems are focused on. All of those would form the base for more research on how to use the modern CAD technology to design complex engine parts. And it is also a good example of using the modern CAD technology.
基金Supported by National Science and Technology Support Program of China(Grant No.2015BAF07B04)
文摘Numerous vibration-based techniques are rarely used in diesel engines fault diagnosis in a direct way, due to the surface vibration signals of diesel engines with the complex non-stationary and nonlinear time-varying fea- tures. To investigate the fault diagnosis of diesel engines, fractal correlation dimension, wavelet energy and entropy as features reflecting the diesel engine fault fractal and energy characteristics are extracted from the decomposed signals through analyzing vibration acceleration signals derived from the cylinder head in seven different states of valve train. An intelligent fault detector FastICA-SVM is applied for diesel engine fault diagnosis and classification. The results demonstrate that FastlCA-SVM achieves higher classification accuracy and makes better general- ization performance in small samples recognition. Besides, the fractal correlation dimension and wavelet energy and entropy as the special features of diesel engine vibration signal are considered as input vectors of classifier FastlCA- SVM and could produce the excellent classification results. The proposed methodology improves the accuracy of fea- ture extraction and the fault diagnosis of diesel engines.
基金This work was supported by the National Natural Science Foundation of China (No. 20425722, 20621140004);the Ministry of Science and Technology of China (No. 2006AA060304).
文摘In this study, the efforts to reduce NOx and particulate matter (PM) emissions from a diesel engine using both ethanol-selective catalytic reduction (SCR) of NOx over an Ag/Al2O3 catalyst and a biodiesel-ethanol-diesel fuel blend (BE-diesel) on an engine bench test are discussed. Compared with diesel fuel, use of BE-diesel increased PM emissions by 14% due to the increase in the soluble organic fraction (SOF) of PM, but it greatly reduced the Bosch smoke number by 60%-80% according to the results from 13-mode test of European Stationary Cycle (ESC) test. The SCR catalyst was effective in NOx reduction by ethanol, and the NOx conversion was approximately 73%. Total hydrocarbons (THC) and CO emissions increased significantly during the SCR of NOx process. Two diesel oxidation catalyst (DOC) assemblies were used after Ag/Al2O3 converter to remove CO and HC. Different oxidation catalyst showed opposite effect on PM emission. The PM composition analysis revealed that the net effect of oxidation catalyst on total PM was an integrative effect on SOF reduction and sulfate formation of PM. The engine bench test results indicated that the combination of BE-diesel and a SCR catalyst assembly could provide benefits for NOx and PM emissions control even without using diesel particle filters (DPFs).
文摘The demands for improved fuel economy,performance and emissions continue to pose challenges for engine designers and the materials they choose. This is particularly true for modern diesel engines,where the primary path to achieving improved engine performance and emissions is to increase the Peak Firing Pressure in the combustion chamber. The resulting increase in thermal and mechanical loading has required a change from conventional grey cast iron to Compacted Graphite Iron (CGI) in order to satisfy durability requirements without increasing the size or the weight of the engines. With at least 75% higher tensile strength,45% higher stiffness and approximately double the fatigue strength of conventional grey cast iron,CGI satisfies durability requirements and also provides the dimensional stability required to meet emissions legislation throughout the life of the engine. Currently,there are no CGI diesel engines running on the roads in North America. This is set to change considerably as new commercial vehicle and pick-up SUV diesel engines are launched with CGI cylinder blocks in 2008 and 2009. These initial programs will provide over 2 million CGI diesel engines when ramped to mature volume,potentially accounting for 10%-15% of the North American passenger vehicle fleet within the next four years.
基金Project(2011BAE22B05)supported by the National Science and Technology Pillar Program during the 12th Five-year Plan of China
文摘Combustion noise takes large proportion in diesel engine noise and the studies of its influence factors play an important role in noise reduction. Engine noise and cylinder pressure measurement experiments were carried out. And the improved attenuation curves were obtained, by which the engine noise was predicted. The effect of fuel injection parameters in combustion noise was investigated during the combustion process. At last, the method combining single variable optimization and multivariate combination was introduced to online optimize the combustion noise. The results show that injection parameters can affect the cylinder pressure rise rate and heat release rate, and consequently affect the cylinder pressure load and pressure oscillation to influence the combustion noise. Among these parameters, main injection advance angle has the greatest influence on the combustion noise, while the pilot injection interval time takes the second place, and the pilot injection quantity is of minimal impact. After the optimal design of the combustion noise, the average sound pressure level of the engine is distinctly reduced by 1.0 d B(A) generally. Meanwhile, the power, emission and economy performances are ensured.
基金performed within the Strategic Research Plan of the Centre for Marine Technology and Ocean Engineering(CENTEC)financed by Portuguese Foundation for Science and Technology(Fundacao para a Ciência e Tecnologia(FCT)),under contract UID/Multi/00134/2013-LISBOA-01-0145-FEDER-007629。
文摘Optimization procedures are required to minimize the amount of fuel consumption and exhaust emissions from marine engines.This study discusses the procedures to optimize the performance of any marine engine implemented in a 0D/1D numerical model in order to achieve lower values of exhaust emissions.From that point,an extension of previous simulation researches is presented to calculate the amount of SOx emissions from two marine diesel engines along their load diagrams based on the percentage of sulfur in the marine fuel used.The variations of SOx emissions are computed in g/k W·h and in parts per million(ppm)as functions of the optimized parameters:brake specific fuel consumption and the amount of air-fuel ratio respectively.Then,a surrogate model-based response surface methodology is used to generate polynomial equations to estimate the amount of SOx emissions as functions of engine speed and load.These developed non-dimensional equations can be further used directly to assess the value of SOx emissions for different percentages of sulfur of the selected or similar engines to be used in different marine applications.
文摘The multi-body dynamics model of the X6170ZC diesel is established to analyze vibration and acoustic noise. The high quality finite element and simulation models are developed, and nonlinear springs are used to imitate the joints of engine components. The acoustic behavior of the structure is evaluated by the velocity of surface vibration. The noise level is reduced by improving the structure of the engine. The result shows that the surface vibration velocity level is decreased about 3.7 dB (A) at 1 600 Hz after the optimization. Based on the contrast between the two structures, it is concluded that through structure design the combined noise can be reduced, and the virtual design mode of diesel engines is feasible.
基金supported by the Ministry of Science and Technology of the People’s Republic of China[grant numbers 2017YFC0211304]the Natural Science Foundation of Shandong Province[grant number ZR2019MEE041]the Open Fund of the National Engineering Laboratory for Mobile Source Emission Control Technology[grant number NELMS2017A14].
文摘In order to effectively implement DPF(Diesel Particulate Filters)regeneration control,thermal management of exhaust products before and inside Diesel Oxidation Catalyst(DOC)is necessary.In the present study,the Influence of the intake throttle valve and late post injection process on temperature rise inside DOC is analyzed through engine bench tests.The steady experiment results show that adjustment of the intake throttle valve can effectively increase exhaust temperature before DOC;in particular,with intake throttle valve opening at 20%,temperature before DOC can be increased by about 170℃ with respect to the full opening.An increase in the late post injection quantity can produce a significant rise of the temperature inside DOC,however its impact on the exhaust temperature before DOC is relatively limited.As the late post injection quantity increases,Hydrocarbon(HC)emissions also grow;in the present work it is shown that with a proper injection quantity,a considerable temperature increase inside the DOC can be obtained with relatively low HC emission.More specifically,with the intake throttle valve at 30%and DOC reaching ignition temperature as the late post injection quantity is increased,the exhaust temperature after DOC can be made larger than 550℃,adequate for DPF active regeneration.
文摘This study paves the way on reducing smoke emission and NO_x emissions of research diesel engine by detailing the e ect of water addition in biodiesel. Fuel samples were prepared with di erent concentrations of water in orange peel oil biodiesel(94% waste orange peel oil biodiesel + 4% water + 2% Span 80(WOPOBDE1) and 90% waste orange peel oil biodiesel + 8% water + 2% Span 80(WOPOBDE2). Span 80 was employed as a nonionic surfactant, which emulsifies water in biodiesel. Experimental results revealed that the nitrogen oxides and smoke emission of orange peel oil biodiesel emulsion were reduced by 11%–19% and 3%–21%, respectively, compared to that of neat orange peel oil biodiesel(WOPOBD). In addition, the introduction of orange peel oil–water emulsions in the diesel engine considerably reduced the emissions of unburned hydrocarbons and carbon monoxide. The overall hydrocarbon emission of WOPOBDE2 was 12.2% lower than that of WOPOBD and 16.3% lower than that of diesel. The overall CO emission of WOPOBDE2 was 17% lower than that of base fuel(WOPOBD) and 21.8% lower than that of diesel. Experimental results revealed that modified fuel had higher brake thermal e ciency and lower brake specific fuel consumption than that of base fuel at all engine brake power levels.