This paper examines project⁃based policies and regulations implemented globally to control and mitigate emissions from diesel⁃powered construction equipment.This study systematically reviews and analyzes various manag...This paper examines project⁃based policies and regulations implemented globally to control and mitigate emissions from diesel⁃powered construction equipment.This study systematically reviews and analyzes various managerial,regulatory,and technical measures adopted across countries and regions,mostly of advanced economy.Key strategies of control include setting emission thresholds,idling restrictions,perform remote online monitoring,operational time limits,setting low emission zones,and enforced registration systems.The review highlights the rationale,implementation details,and experiences gained from these localized approaches,reduces localized emission sources,improve urban air quality and environmental management efficiency.展开更多
Diesel emission fluid (DEF) soaking and urea deposits on selective catalytic reduction (SCR) catalysts are critical issues for real diesel engine NH3-SCR systems. To investigate the impact of DEF soaking and urea ...Diesel emission fluid (DEF) soaking and urea deposits on selective catalytic reduction (SCR) catalysts are critical issues for real diesel engine NH3-SCR systems. To investigate the impact of DEF soaking and urea deposits on SCR catalyst performance, fresh Cu-zeolite catalyst samples were drilled from a full-size SCR catalyst. Those samples were impregnated with DEF solutions and subsequently hydrothermally treated to simulate DEF soaking and urea deposits on real SCR catalysts during diesel engine operations. Their SCR performance was then evaluated in a flow reactor with a four-step test protocol. Test results show that the DEF soaking leached some Cu from the SCR catalysts and slightly reduced their Cu loadings. The loss of Cu and associated metal sites on the catalysts weakened their catalytic oxidation abilities and caused lower NO/NI-I3 oxidation and lower high-temperature N20 selectivity. Lower Cu loading also made the catalysts less active to the decomposition of surface ammonium nitrates and decreased low-temperature N20 selectivity. Cu loss during DEF impregnation released more acid sites on the surface of the catalysts and increased their acidities, and more NH3 was able to be adsorbed and involved in SCR reactions at medium and high temperatures. Due to lower NH3 oxidation and higher NH3 storage, the DEF-impregnated SCR catalyst samples showed higher NOx conversion above 400 ℃ compared with the non-soaked one. The negative impact of urea deposits during DEF impregnation was not clearly observed, because the high-temperature hydrothermal treatment helped to remove the urea deposits.展开更多
Due to high price of Straight Vegetable Oil (SVO) for bio-diesel production, the use of Waste Cooking Oil (WCO) will be cost effective. Furthermore, utilization of WCO will refrain waterways pollution and endanger...Due to high price of Straight Vegetable Oil (SVO) for bio-diesel production, the use of Waste Cooking Oil (WCO) will be cost effective. Furthermore, utilization of WCO will refrain waterways pollution and endanger ecosystem. In Malaysia, more than 50-tone of WCO from various sources was produced every day. This study evaluates combustion performance and exhaust emission characteristics of several WCOs with different sources. Modification on fuel properties has been done to improve the combustion and exhaust emission of using WCO as diesel fuel. Regular diesel fuel also has been used for comparison in the test. A 0.6 liter, single-cylinder, air-cooled direct injection diesel engine was used to perform this experiment. Experiment was done at variable engine loads at constant speed.展开更多
A database of real-world diesel vehicle emission factors, based on type and technology, has been developed following tests on more than 300 diesel vehicles in China using a portable emission measurement system. The da...A database of real-world diesel vehicle emission factors, based on type and technology, has been developed following tests on more than 300 diesel vehicles in China using a portable emission measurement system. The database provides better understanding of diesel vehicle emissions under actual driving conditions. We found that although new regulations have reduced real-world emission levels of diesel trucks and buses significantly for most pollutants in China, NOx emissions have been inadequately controlled by the current standards, especially for diesel buses, because of bad driving conditions in the real world. We also compared the emission factors in the database with those calculated by emission factor models and used in inventory studies. The emission factors derived from COPERT(Computer Programmer to calculate Emissions from Road Transport) and MOBILE may both underestimate real emission factors, whereas the updated COPERT and PART5(Highway Vehicle Particulate Emission Modeling Software) models may overestimate emission factors in China. Real-world measurement results and emission factors used in recent emission inventory studies are inconsistent,which has led to inaccurate estimates of emissions from diesel trucks and buses over recent years. This suggests that emission factors derived from European or US-based models will not truly represent real-world emissions in China. Therefore, it is useful and necessary to conduct systematic real-world measurements of vehicle emissions in China in order to obtain the optimum inputs for emission inventory models.展开更多
A total of 15 light-duty diesel vehicles(LDDVs) were tested with the goal of understanding the emission factors of real-world vehicles by conducting on-board emission measurements. The emission characteristics of hy...A total of 15 light-duty diesel vehicles(LDDVs) were tested with the goal of understanding the emission factors of real-world vehicles by conducting on-board emission measurements. The emission characteristics of hydrocarbons(HC) and nitrogen oxides(NOx) at different speeds, chemical species profiles and ozone formation potential(OFP) of volatile organic compounds(VOCs) emitted from diesel vehicles with different emission standards were analyzed. The results demonstrated that emission reductions of HC and NOxhad been achieved as the control technology became more rigorous from Stage I to Stage IV. It was also found that the HC and NOxemissions and percentage of O2 dropped with the increase of speed, while the percentage of CO2 increased. The abundance of alkanes was significantly higher in diesel vehicle emissions, approximately accounting for 41.1%–45.2%, followed by aromatics and alkenes. The most abundant species were propene,ethane, n-decane, n-undecane, and n-dodecane. The maximum incremental reactivity(MIR)method was adopted to evaluate the contributions of individual VOCs to OFP. The results indicated that the largest contributors to O3 production were alkenes and aromatics, which accounted for 87.7%–91.5%. Propene, ethene, 1,2,4-trimethylbenzene, 1-butene, and1,2,3-trimethylbenzene were the top five VOC species based on their OFP, and accounted for 54.0%-64.8% of the total OFP. The threshold dilution factor was applied to analyze the possibility of VOC stench pollution. The majority of stench components emitted from vehicle exhaust were aromatics, especially p-diethylbenzene, propylbenzene, m-ethyltoluene, and p-ethyltoluene.展开更多
To clean the exhaust emissions as one of the most important tasks in pollution control, a study on the treatment of engine emissions with discharge assistance was reported. A DBD plasma source shaped in grid and cylin...To clean the exhaust emissions as one of the most important tasks in pollution control, a study on the treatment of engine emissions with discharge assistance was reported. A DBD plasma source shaped in grid and cylinder was examined in different engine operational modes to reduce the NOx content of diesel engine exhaust. The composition of the exhaust gases and chemical reactions initiated by the discharge were analyzed. The discharge frequency had a crucial impact on the device's performance and gas treatment. The voltages applied to the discharge gap could alter the chemical reactions occurring in the treated gases, which were indicated by the NO to NO2 ratio. The operation of the system was studied at frequencies ranging from 400 Hz to 16 kHz.展开更多
Ⅰ. Briefing domestic vehicle diesel engines Before the 1970s, domestic vehicle diesel engines were mainly applied to heavy vehicles, while medium and light vehicles were powered chiefly with gasoline engines.
CHINA'S DOMINANCE IN NEW ENERGY VEHICLE MANUFACTURING The market for electric vehicles(EVs)is set to take off as China,the world's largest car market,joined France and the UK in a plan to ban the production and sa...CHINA'S DOMINANCE IN NEW ENERGY VEHICLE MANUFACTURING The market for electric vehicles(EVs)is set to take off as China,the world's largest car market,joined France and the UK in a plan to ban the production and sale of diesel and petrol cars in the near future,and replace them with EVs to reduce pollution and carbon emissions.展开更多
CO_2 emitted from ship exhaust is one of the major sources of atmospheric pollution. In order to reduce ship CO_2 emissions, this paper comes up with the idea of recovering CO_2 from ship exhaust by Na OH solution and...CO_2 emitted from ship exhaust is one of the major sources of atmospheric pollution. In order to reduce ship CO_2 emissions, this paper comes up with the idea of recovering CO_2 from ship exhaust by Na OH solution and improves the absorption rate by adding Ca O solid particles. The effect mechanism of Ca O solid particles on CO_2 absorption efficiency is analyzed in detail, and the mathematical model is deduced and the Ca O enhancement factor is calculated through experiments. Experiment result demonstrates that the effect of CaO solid particles on the absorption of CO_2 in alkali solution is significant. The absorption rate of pure CO_2 gas,the simulated ship exhaust gas and 6135 AZG marine diesel engine emission can be increased by 10%, 15.85% and10.30%, respectively. So it can be seen that CaO solid particles play an important role in improving the absorption efficiency of ship CO_2 emission.展开更多
Emission characterization of particle number as well as particle mass from three diesel passenger cars equipped with diesel particulate filter(DPF), diesel oxidation catalyst(DOC)and exhaust gas recirculation(EGR...Emission characterization of particle number as well as particle mass from three diesel passenger cars equipped with diesel particulate filter(DPF), diesel oxidation catalyst(DOC)and exhaust gas recirculation(EGR) under the vehicle driving cycles and regulatory cycle.Total particle number emissions(PNEs) decreased gradually during speed-up of vehicle from 17.3 to 97.3 km/hr. As the average vehicle speed increases, the size-segregated peak of particle number concentration shifts to smaller size ranges of particles. The correlation analysis with various particulate components such as particle number concentration(PNC),ultrafine particle number concentration(UFPNC) and particulate matter(PM) mass was conducted to compare gaseous compounds(CO, CO2, HC and NOx). The UFPNC and PM were not only emitted highly in Seoul during severe traffic jam conditions, but also have good correlation with hydrocarbons and NOxinfluencing high potential on secondary aerosol generation. The effect of the dilution temperature on total PNC under the New European Driving Cycle(NEDC), was slightly higher than the dilution ratio. In addition, the nuclei mode(DP: ≤ 13 nm) was confirmed to be more sensitive to the dilution temperature rather than other particle size ranges. Comparison with particle composition between vehicle speed cycles and regulatory cycle showed that sulfate was slightly increased at regulatory cycle, while other components were relatively similar. During cold start test, semivolatile nucleation particles were increased due to effect of cold environment. Research on particle formation dependent on dilution conditions of diesel passenger cars under the NEDC is important to verify impact on vehicular traffic and secondary aerosol formation in Seoul.展开更多
The objective of this study is to estimate the vehicle kilometer traveled(VKT) and on-road emissions using the traffic volume in urban. We estimated two VKT; one is based on registered vehicles and the other is base...The objective of this study is to estimate the vehicle kilometer traveled(VKT) and on-road emissions using the traffic volume in urban. We estimated two VKT; one is based on registered vehicles and the other is based on traffic volumes. VKT for registered vehicles was 2.11 times greater than that of the applied traffic volumes because each VKT estimation method is different. Therefore, we had to define the inner VKT is moved VKT inner in urban to compare two values. Also, we focused on freight modes because these are discharged much air pollutant emissions. From analysis results, we found middle and large trucks registered in other regions traveled to target city in order to carry freight, target city has included many industrial and logistics areas. Freight is transferred through the harbors,large logistics centers, or via locations before being moved to the final destination. During this process, most freight is moved by middle and large trucks, and trailers rather than small trucks for freight import and export. Therefore, these trucks from other areas are inflow more than registered vehicles. Most emissions from diesel trucks had been overestimated in comparison to VKT from applied traffic volumes in target city. From these findings, VKT is essential based on traffic volume and travel speed on road links in order to estimate accurately the emissions of diesel trucks in target city. Our findings support the estimation of the effect of on-road emissions on urban air quality in Korea.展开更多
基金Research Grants Council of the Hong Kong Special Administrative Region,China(U15239024)。
文摘This paper examines project⁃based policies and regulations implemented globally to control and mitigate emissions from diesel⁃powered construction equipment.This study systematically reviews and analyzes various managerial,regulatory,and technical measures adopted across countries and regions,mostly of advanced economy.Key strategies of control include setting emission thresholds,idling restrictions,perform remote online monitoring,operational time limits,setting low emission zones,and enforced registration systems.The review highlights the rationale,implementation details,and experiences gained from these localized approaches,reduces localized emission sources,improve urban air quality and environmental management efficiency.
基金Project supported by the National High-Tech R&D Program(863 Program)of China(No.2013AA065301)the Fundamental Research Funds for the Central Universities,and the State Key Laboratory of Clean Energy Utilization at Zhejiang University(No.ZJUCEU2016006),China
文摘Diesel emission fluid (DEF) soaking and urea deposits on selective catalytic reduction (SCR) catalysts are critical issues for real diesel engine NH3-SCR systems. To investigate the impact of DEF soaking and urea deposits on SCR catalyst performance, fresh Cu-zeolite catalyst samples were drilled from a full-size SCR catalyst. Those samples were impregnated with DEF solutions and subsequently hydrothermally treated to simulate DEF soaking and urea deposits on real SCR catalysts during diesel engine operations. Their SCR performance was then evaluated in a flow reactor with a four-step test protocol. Test results show that the DEF soaking leached some Cu from the SCR catalysts and slightly reduced their Cu loadings. The loss of Cu and associated metal sites on the catalysts weakened their catalytic oxidation abilities and caused lower NO/NI-I3 oxidation and lower high-temperature N20 selectivity. Lower Cu loading also made the catalysts less active to the decomposition of surface ammonium nitrates and decreased low-temperature N20 selectivity. Cu loss during DEF impregnation released more acid sites on the surface of the catalysts and increased their acidities, and more NH3 was able to be adsorbed and involved in SCR reactions at medium and high temperatures. Due to lower NH3 oxidation and higher NH3 storage, the DEF-impregnated SCR catalyst samples showed higher NOx conversion above 400 ℃ compared with the non-soaked one. The negative impact of urea deposits during DEF impregnation was not clearly observed, because the high-temperature hydrothermal treatment helped to remove the urea deposits.
文摘Due to high price of Straight Vegetable Oil (SVO) for bio-diesel production, the use of Waste Cooking Oil (WCO) will be cost effective. Furthermore, utilization of WCO will refrain waterways pollution and endanger ecosystem. In Malaysia, more than 50-tone of WCO from various sources was produced every day. This study evaluates combustion performance and exhaust emission characteristics of several WCOs with different sources. Modification on fuel properties has been done to improve the combustion and exhaust emission of using WCO as diesel fuel. Regular diesel fuel also has been used for comparison in the test. A 0.6 liter, single-cylinder, air-cooled direct injection diesel engine was used to perform this experiment. Experiment was done at variable engine loads at constant speed.
基金supported by the National Science Foundation of China (Nos. 41275124, 51278272)the Beijing Natural Science Foundation (8142011)+1 种基金the Ministry of Environmental Protection of China (No. 201209007)the International Council on Clean Transportation (ICCT) research program
文摘A database of real-world diesel vehicle emission factors, based on type and technology, has been developed following tests on more than 300 diesel vehicles in China using a portable emission measurement system. The database provides better understanding of diesel vehicle emissions under actual driving conditions. We found that although new regulations have reduced real-world emission levels of diesel trucks and buses significantly for most pollutants in China, NOx emissions have been inadequately controlled by the current standards, especially for diesel buses, because of bad driving conditions in the real world. We also compared the emission factors in the database with those calculated by emission factor models and used in inventory studies. The emission factors derived from COPERT(Computer Programmer to calculate Emissions from Road Transport) and MOBILE may both underestimate real emission factors, whereas the updated COPERT and PART5(Highway Vehicle Particulate Emission Modeling Software) models may overestimate emission factors in China. Real-world measurement results and emission factors used in recent emission inventory studies are inconsistent,which has led to inaccurate estimates of emissions from diesel trucks and buses over recent years. This suggests that emission factors derived from European or US-based models will not truly represent real-world emissions in China. Therefore, it is useful and necessary to conduct systematic real-world measurements of vehicle emissions in China in order to obtain the optimum inputs for emission inventory models.
基金supported by the Natural Sciences Foundation of China(Nos.91544232&51408015)the Ministry of Environmental Protection Special Funds for Scientific Research on Public Causes(No.201409006)+4 种基金the Beijing municipal science and technology plan projects(No.Z131100001113029)the 13th graduate students of science and technology fund of Beijing University of Technology(ykj-2014-11484)the projects supported by Beijing Municipal Commission of Science and Technology(No.Z141100001014002)Beijing Municipal Commission of Education(No.PXM2016_014204_001029)National Science and Technology Support Project of China(No.2014BAC23B02)
文摘A total of 15 light-duty diesel vehicles(LDDVs) were tested with the goal of understanding the emission factors of real-world vehicles by conducting on-board emission measurements. The emission characteristics of hydrocarbons(HC) and nitrogen oxides(NOx) at different speeds, chemical species profiles and ozone formation potential(OFP) of volatile organic compounds(VOCs) emitted from diesel vehicles with different emission standards were analyzed. The results demonstrated that emission reductions of HC and NOxhad been achieved as the control technology became more rigorous from Stage I to Stage IV. It was also found that the HC and NOxemissions and percentage of O2 dropped with the increase of speed, while the percentage of CO2 increased. The abundance of alkanes was significantly higher in diesel vehicle emissions, approximately accounting for 41.1%–45.2%, followed by aromatics and alkenes. The most abundant species were propene,ethane, n-decane, n-undecane, and n-dodecane. The maximum incremental reactivity(MIR)method was adopted to evaluate the contributions of individual VOCs to OFP. The results indicated that the largest contributors to O3 production were alkenes and aromatics, which accounted for 87.7%–91.5%. Propene, ethene, 1,2,4-trimethylbenzene, 1-butene, and1,2,3-trimethylbenzene were the top five VOC species based on their OFP, and accounted for 54.0%-64.8% of the total OFP. The threshold dilution factor was applied to analyze the possibility of VOC stench pollution. The majority of stench components emitted from vehicle exhaust were aromatics, especially p-diethylbenzene, propylbenzene, m-ethyltoluene, and p-ethyltoluene.
基金supported by the Ministry of Commerce Industry and Energy, Korea (No.2006-C-CC02-P-05-0-000)supported by a grant from "the 2nd phase BK21 project"
文摘To clean the exhaust emissions as one of the most important tasks in pollution control, a study on the treatment of engine emissions with discharge assistance was reported. A DBD plasma source shaped in grid and cylinder was examined in different engine operational modes to reduce the NOx content of diesel engine exhaust. The composition of the exhaust gases and chemical reactions initiated by the discharge were analyzed. The discharge frequency had a crucial impact on the device's performance and gas treatment. The voltages applied to the discharge gap could alter the chemical reactions occurring in the treated gases, which were indicated by the NO to NO2 ratio. The operation of the system was studied at frequencies ranging from 400 Hz to 16 kHz.
文摘Ⅰ. Briefing domestic vehicle diesel engines Before the 1970s, domestic vehicle diesel engines were mainly applied to heavy vehicles, while medium and light vehicles were powered chiefly with gasoline engines.
文摘CHINA'S DOMINANCE IN NEW ENERGY VEHICLE MANUFACTURING The market for electric vehicles(EVs)is set to take off as China,the world's largest car market,joined France and the UK in a plan to ban the production and sale of diesel and petrol cars in the near future,and replace them with EVs to reduce pollution and carbon emissions.
基金the Shanghai Science and Technology Committee(No.17170712100)
文摘CO_2 emitted from ship exhaust is one of the major sources of atmospheric pollution. In order to reduce ship CO_2 emissions, this paper comes up with the idea of recovering CO_2 from ship exhaust by Na OH solution and improves the absorption rate by adding Ca O solid particles. The effect mechanism of Ca O solid particles on CO_2 absorption efficiency is analyzed in detail, and the mathematical model is deduced and the Ca O enhancement factor is calculated through experiments. Experiment result demonstrates that the effect of CaO solid particles on the absorption of CO_2 in alkali solution is significant. The absorption rate of pure CO_2 gas,the simulated ship exhaust gas and 6135 AZG marine diesel engine emission can be increased by 10%, 15.85% and10.30%, respectively. So it can be seen that CaO solid particles play an important role in improving the absorption efficiency of ship CO_2 emission.
基金supported by Transportation Pollution Research Center,National Institute of Environmental Research in Republic of Korea
文摘Emission characterization of particle number as well as particle mass from three diesel passenger cars equipped with diesel particulate filter(DPF), diesel oxidation catalyst(DOC)and exhaust gas recirculation(EGR) under the vehicle driving cycles and regulatory cycle.Total particle number emissions(PNEs) decreased gradually during speed-up of vehicle from 17.3 to 97.3 km/hr. As the average vehicle speed increases, the size-segregated peak of particle number concentration shifts to smaller size ranges of particles. The correlation analysis with various particulate components such as particle number concentration(PNC),ultrafine particle number concentration(UFPNC) and particulate matter(PM) mass was conducted to compare gaseous compounds(CO, CO2, HC and NOx). The UFPNC and PM were not only emitted highly in Seoul during severe traffic jam conditions, but also have good correlation with hydrocarbons and NOxinfluencing high potential on secondary aerosol generation. The effect of the dilution temperature on total PNC under the New European Driving Cycle(NEDC), was slightly higher than the dilution ratio. In addition, the nuclei mode(DP: ≤ 13 nm) was confirmed to be more sensitive to the dilution temperature rather than other particle size ranges. Comparison with particle composition between vehicle speed cycles and regulatory cycle showed that sulfate was slightly increased at regulatory cycle, while other components were relatively similar. During cold start test, semivolatile nucleation particles were increased due to effect of cold environment. Research on particle formation dependent on dilution conditions of diesel passenger cars under the NEDC is important to verify impact on vehicular traffic and secondary aerosol formation in Seoul.
基金supported by the Korea Transport Institute,Republic of Koreasupported by Technology Development to evaluate GHG Emissions Indices of Mobiles and Municipal Sustainability(Transport logistics project 14TLRP-CO84940-01) commissioned from KAIA
文摘The objective of this study is to estimate the vehicle kilometer traveled(VKT) and on-road emissions using the traffic volume in urban. We estimated two VKT; one is based on registered vehicles and the other is based on traffic volumes. VKT for registered vehicles was 2.11 times greater than that of the applied traffic volumes because each VKT estimation method is different. Therefore, we had to define the inner VKT is moved VKT inner in urban to compare two values. Also, we focused on freight modes because these are discharged much air pollutant emissions. From analysis results, we found middle and large trucks registered in other regions traveled to target city in order to carry freight, target city has included many industrial and logistics areas. Freight is transferred through the harbors,large logistics centers, or via locations before being moved to the final destination. During this process, most freight is moved by middle and large trucks, and trailers rather than small trucks for freight import and export. Therefore, these trucks from other areas are inflow more than registered vehicles. Most emissions from diesel trucks had been overestimated in comparison to VKT from applied traffic volumes in target city. From these findings, VKT is essential based on traffic volume and travel speed on road links in order to estimate accurately the emissions of diesel trucks in target city. Our findings support the estimation of the effect of on-road emissions on urban air quality in Korea.