Electric double-layer capacitors(EDLCs) are emerging technologies to meet the ever-increasing demand for sustainable energy storage devices and systems in the 21 st Century owing to their advantages such as long lifet...Electric double-layer capacitors(EDLCs) are emerging technologies to meet the ever-increasing demand for sustainable energy storage devices and systems in the 21 st Century owing to their advantages such as long lifetime, fast charging speed and environmentally-friendly nature, which play a critical part in satisfying the demand of electronic devices and systems. Although it is generally accepted that EDLCs are suitable for working at low temperatures down to-40℃, there is a lack of comprehensive review to summarize the quantified performance of EDLCs when they are subjected to low-temperature environments. The rapid and growing demand for high-performance EDLCs for auxiliary power systems in the aeronautic and aerospace industries has triggered the urge to extend their operating temperature range,especially at temperatures below-40℃. This article presents an overview of EDLC’s performance and their challenges at extremely low temperatures including the capability of storing a considerable amount of electrical energy and maintaining long-term stability. The selection of electrolytes and electrode materials is crucial to the performance of EDLCs operating at a desired low-temperature range. Strategies to improve EDLC’s performance at extremely low temperatures are discussed, followed by the future perspectives to motivate more future studies to be conducted in this area.展开更多
Ionic liquid(IL) 1-butyl-3-methylimidazolium hydrosulphate([C_4mim]HSO_4) was synthesized and its denitrogenation performance was investigated for diesel fraction with high content of nitride from oil shale. The effec...Ionic liquid(IL) 1-butyl-3-methylimidazolium hydrosulphate([C_4mim]HSO_4) was synthesized and its denitrogenation performance was investigated for diesel fraction with high content of nitride from oil shale. The effects of the temperature, the mass ratio of oil to IL, the mass ratio of water to IL, the extraction time, the settling time and the regeneration of IL on the N-removal efficiency were studied. Experimental results showed that the ionic liquid [C_4mim]HSO_4 exhibited excellent denitrogenation performance, and about a 90% basic N-extraction efficiency and a 71% total N-extraction efficiency were achieved under the conditions covering a temperature of 30 ℃, an oil/IL mass ratio of 7:1, a H_2O/ IL mass ratio of 2:1, an extraction time of 20 min and a settling time of 120 min. In addition, the basic N-removal efficiency can still reach 74% during five recycles of the ionic liquid.展开更多
The extractive removal of sulfur compounds (S-compounds) from Dongying and Liaohe diesel fuels with [BF4]^--based ionic liquids were systematically investigated. The results show that the absorption capacity of an i...The extractive removal of sulfur compounds (S-compounds) from Dongying and Liaohe diesel fuels with [BF4]^--based ionic liquids were systematically investigated. The results show that the absorption capacity of an ionic liquid for the S-compounds in diesel fuels relies on its structure and its size. In the case of the two examined diesel fuels, both elongating the cation tail length and increasing the mass ratio of ionic liquid/diesel fuel promote the desulfurization ability of the examined ionic liquids. The results also show that imidazolium-based ionic liquids display higher extraction efficiencies than pyridinium-based ionic liquids, presumably owing to the fact that the rings of the S-compounds are similar to the imidazolium head ring. With the 1 : 1 mass ratio of ionic liquid/diesel fuel, the rates of the first desulfurization of Dongying and Liaohe diesel fuels using [C8mim][BF4] amount to 29.96% and 39.76%, suggesting that [C8mim][BF4] is a promising extractant for desulfurization of these diesel fuels.展开更多
FeCl3-based ionic liquid [Bmim]Br/FeCl3 with lower viscosity was synthesized and its structure was character-ized with FT-IR spectroscopy. The denitrogenation performance of the ionic liquid was investigated using the...FeCl3-based ionic liquid [Bmim]Br/FeCl3 with lower viscosity was synthesized and its structure was character-ized with FT-IR spectroscopy. The denitrogenation performance of the ionic liquid was investigated using the Fushun shale diesel fraction with high nitrogen content. Experimental results showed that the ionic liquid presented good denitrogenation performance and the basic N and total N removal efficiency can reach 95.29% and 89.77% under conditions covering a tem-perature of 30 ℃, an IL/oil mass ratio of 1:1, an extraction time of 30 min, and a settling time of 2 h. Correspondingly, the basic N and total N contents in shale diesel fraction dropped from the original 5454 μg/g and 9832 μg/g to 257 μg/g and 1006 μg/g, respectively. In addition, the basic-N removal efficiency can still reach 60% at an IL/oil mass ratio of 1:7 during four recycles of the ionic liquid.展开更多
An inexpensive coordinated ionic liquid NMP-0.5ZnCl_(2) was synthesized by reacting N-methyl-pyrrolidone with anhydrous ZnCl_(2),and its structure was characterized with FT-IR spectroscopy.The performance of IL for re...An inexpensive coordinated ionic liquid NMP-0.5ZnCl_(2) was synthesized by reacting N-methyl-pyrrolidone with anhydrous ZnCl_(2),and its structure was characterized with FT-IR spectroscopy.The performance of IL for removing basic nitrogen compounds from model oil containing quinoline and actual coker diesel was studied.Experimental results showed that the IL,NMP-0.5ZnCl_(2),exhibited a good denitrogenation performance,which can be attributed to its low viscosity and unoccupied orbitals of Zn ion,while obtaining a 99.68%quinoline removal efficiency under conditions covering a temperature of 50℃,an IL/model oil mass ratio of 1:2,and a reaction time of 30 min.In the case of coker diesel,above a 91%basic N-removal efficiency(with N-content reduced from 536μg/g to 47μg/g)was realized by the IL after 5-stage extraction.Moreover,the quinoline extraction efficiency could still reach 96.73%during four recycles of the IL.展开更多
The eutectic ionic liquid (EIL) tetraethyl ammonium bromide-malonic acid (TEAB-Mal) was synthesized, with its structure characterized by the FT-IR spectroscopy and the 1H NMR spectrometry. The performance for remo...The eutectic ionic liquid (EIL) tetraethyl ammonium bromide-malonic acid (TEAB-Mal) was synthesized, with its structure characterized by the FT-IR spectroscopy and the 1H NMR spectrometry. The performance for removal of basic nitrogen compounds by EIL was studied using coker diesel as the feedstock. Experimental results showed that the EIL (TEAB-Mal) exhibited a good denitrogenation performance, leading to a 93.6% of basic N-removal efficiency under reaction conditions covering: a temperature of 30 ℃, an EIL to oil mass ratio of 1:1, an extraction time of 30 min, and a settling time of 120 min, while the basic nitrogen content in diesel dropped from 580 μg/g to 37 gg/g. In addition, the efficiency for extraction of basic N-compounds could still reach 62.9% at am EIL/oil mass ratio of 1:7 after four recycles of the EIL.展开更多
The promising combustion and emission properties of polyoxymethylene dimethyl ethers(PODEn)are of significant interest.However,the synthesis of PODEn products with desired chain lengths is still a problem facing synth...The promising combustion and emission properties of polyoxymethylene dimethyl ethers(PODEn)are of significant interest.However,the synthesis of PODEn products with desired chain lengths is still a problem facing synthetic PODEn.Herein,a series of unique IL@SBA16Cx solid catalysts are prepared by encapsulation of ionic liquids(ILs)within the nanocage of SBA16 through a silylation method.The structure of the encapsulated catalyst was characterized by UVvis spectra,Fourier transform infrared(FTIR),N2 adsorptiondesorption isotherms,Powder Xray diffraction(XRD),Transmission electron microscopy(TEM)and Elemental analysis.The encapsulated catalysts show similar catalytic activity to the homogeneous counterparts and display higher selectivity to the targeted PODE35 products than their homogeneous counterparts in the synthesis of PODEn from methanol(MeOH)and trioxymethylene(TOM).The encapsulated catalysts exhibit a superior PODE35 selectivity and could be the promising catalysts for PODEn synthetic reaction.展开更多
The authors studied diesel combustion improvement with a reformed fuel that mixed nano air-bubbles by using an EMNB (ejector-type micro-nano bubbler). The EMNB performs adequately and is smaller (20 mm diameter, 34...The authors studied diesel combustion improvement with a reformed fuel that mixed nano air-bubbles by using an EMNB (ejector-type micro-nano bubbler). The EMNB performs adequately and is smaller (20 mm diameter, 34 mm length) than other micro-nano bubblers. It is quite possible to install it in an actual engine. An experiment was performed using a single cylinder engine with a dish or square shaped combustion chamber cavity, and in order to compare the engine speed change, we also used a four cylinder engine with a turbo-charger. The results showed that an improvement in specific fuel consumption, a decrease in the density of the exhaust smoke and an improvement in charging efficiency etc. were achieved by mixing nano bubbles into gas oil under most conditions. It is confirmed that combustion was promoted and improved by a physical and chemical action through mixing the nano bubbles into gas oil.展开更多
The inherent advantages of ionic liquids (ILs) in electrochemistry have received extensive attention in recent two decades. As a new generation of ILs, non-haloaluminate ILs exhibit better benefits and fewer drawbac...The inherent advantages of ionic liquids (ILs) in electrochemistry have received extensive attention in recent two decades. As a new generation of ILs, non-haloaluminate ILs exhibit better benefits and fewer drawbacks compared to haloaluminate based ILs, which are more qualified for metal electrodeposition, especially reactive metals. In this brief review, the recent developments regard- ing the application of non-haloaluminate ILs as solvents for low-temperature electrodeposition of rare-earth (RE) metals are outlined. In addition, the current problems and an outlook on future research are presented.展开更多
Ionic liquids(ILs)hold great promise as highperformance electrolyte material due to their unique advantages including nonvolatility,high thermal stability and high ionic conductivity.However,the IL-based electrolytes ...Ionic liquids(ILs)hold great promise as highperformance electrolyte material due to their unique advantages including nonvolatility,high thermal stability and high ionic conductivity.However,the IL-based electrolytes always suffer from serious ion aggregation and high viscosity at low temperatures,leading to significantly decline in ionic conductivity.Here,hydrogen-bonded organic framework-ionic liquid composite quasi-solid electrolyte(high temperature treatment(HT)-HOF-IL CQSE)was prepared through confining the IL electrolytes(ILEs)into the pore of HOF lamellar framework.The weak hydrogen bonding interactions within HOF nanosheets,together with the generated interactions between ILE and HOF,enable uniform and continuous distribution of ILE in HOF lamellar framework.This effectively inhibits the ion migration of ILE,which meanwhile serves as Li+transfer sites,affording high ionic conductivity of 5.7×10^(-5)S·cm-1 at-60 ℃,with high lithium-ion transference number of 0.69,whereas ILEs usually lose ionic conduction ability at such low temperatures.The assembled Li symmetrical cell can stably cycle at 0.2 mA·cm^(-2)and^(-2)0 ℃ for more than 1500 h.The LiFePO_(4)|HT-HOF-IL CQSE|Li cell shows excellent cycling performance at 0.5 C at a wide temperature range of^(-2)0 to 60 ℃.This work may pave a new avenue for the development of high-performance IL-based composite electrolytes.展开更多
基金the Australian Research Council for its support through the Discovery Project scheme (DP190103186)the Industrial Transformation Training Centre Scheme(IC180100005)。
文摘Electric double-layer capacitors(EDLCs) are emerging technologies to meet the ever-increasing demand for sustainable energy storage devices and systems in the 21 st Century owing to their advantages such as long lifetime, fast charging speed and environmentally-friendly nature, which play a critical part in satisfying the demand of electronic devices and systems. Although it is generally accepted that EDLCs are suitable for working at low temperatures down to-40℃, there is a lack of comprehensive review to summarize the quantified performance of EDLCs when they are subjected to low-temperature environments. The rapid and growing demand for high-performance EDLCs for auxiliary power systems in the aeronautic and aerospace industries has triggered the urge to extend their operating temperature range,especially at temperatures below-40℃. This article presents an overview of EDLC’s performance and their challenges at extremely low temperatures including the capability of storing a considerable amount of electrical energy and maintaining long-term stability. The selection of electrolytes and electrode materials is crucial to the performance of EDLCs operating at a desired low-temperature range. Strategies to improve EDLC’s performance at extremely low temperatures are discussed, followed by the future perspectives to motivate more future studies to be conducted in this area.
文摘Ionic liquid(IL) 1-butyl-3-methylimidazolium hydrosulphate([C_4mim]HSO_4) was synthesized and its denitrogenation performance was investigated for diesel fraction with high content of nitride from oil shale. The effects of the temperature, the mass ratio of oil to IL, the mass ratio of water to IL, the extraction time, the settling time and the regeneration of IL on the N-removal efficiency were studied. Experimental results showed that the ionic liquid [C_4mim]HSO_4 exhibited excellent denitrogenation performance, and about a 90% basic N-extraction efficiency and a 71% total N-extraction efficiency were achieved under the conditions covering a temperature of 30 ℃, an oil/IL mass ratio of 7:1, a H_2O/ IL mass ratio of 2:1, an extraction time of 20 min and a settling time of 120 min. In addition, the basic N-removal efficiency can still reach 74% during five recycles of the ionic liquid.
基金Supported by the National Natural Science Foundation of China (40673043, 20576073), CNPC Innovation Fund (04E7031), and the Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-06-0088).
文摘The extractive removal of sulfur compounds (S-compounds) from Dongying and Liaohe diesel fuels with [BF4]^--based ionic liquids were systematically investigated. The results show that the absorption capacity of an ionic liquid for the S-compounds in diesel fuels relies on its structure and its size. In the case of the two examined diesel fuels, both elongating the cation tail length and increasing the mass ratio of ionic liquid/diesel fuel promote the desulfurization ability of the examined ionic liquids. The results also show that imidazolium-based ionic liquids display higher extraction efficiencies than pyridinium-based ionic liquids, presumably owing to the fact that the rings of the S-compounds are similar to the imidazolium head ring. With the 1 : 1 mass ratio of ionic liquid/diesel fuel, the rates of the first desulfurization of Dongying and Liaohe diesel fuels using [C8mim][BF4] amount to 29.96% and 39.76%, suggesting that [C8mim][BF4] is a promising extractant for desulfurization of these diesel fuels.
基金financial support from the Doctoral Funds of Liaoning Provincial Natural Science Foundation (201601323)
文摘FeCl3-based ionic liquid [Bmim]Br/FeCl3 with lower viscosity was synthesized and its structure was character-ized with FT-IR spectroscopy. The denitrogenation performance of the ionic liquid was investigated using the Fushun shale diesel fraction with high nitrogen content. Experimental results showed that the ionic liquid presented good denitrogenation performance and the basic N and total N removal efficiency can reach 95.29% and 89.77% under conditions covering a tem-perature of 30 ℃, an IL/oil mass ratio of 1:1, an extraction time of 30 min, and a settling time of 2 h. Correspondingly, the basic N and total N contents in shale diesel fraction dropped from the original 5454 μg/g and 9832 μg/g to 257 μg/g and 1006 μg/g, respectively. In addition, the basic-N removal efficiency can still reach 60% at an IL/oil mass ratio of 1:7 during four recycles of the ionic liquid.
基金The authors are grateful for financial support from the Doctoral Funds of Liaoning Provincial Natural Science Foundation(201601323)the Research Startup Foundation of Liaoning Petrochemical University(2019xJJ-006).
文摘An inexpensive coordinated ionic liquid NMP-0.5ZnCl_(2) was synthesized by reacting N-methyl-pyrrolidone with anhydrous ZnCl_(2),and its structure was characterized with FT-IR spectroscopy.The performance of IL for removing basic nitrogen compounds from model oil containing quinoline and actual coker diesel was studied.Experimental results showed that the IL,NMP-0.5ZnCl_(2),exhibited a good denitrogenation performance,which can be attributed to its low viscosity and unoccupied orbitals of Zn ion,while obtaining a 99.68%quinoline removal efficiency under conditions covering a temperature of 50℃,an IL/model oil mass ratio of 1:2,and a reaction time of 30 min.In the case of coker diesel,above a 91%basic N-removal efficiency(with N-content reduced from 536μg/g to 47μg/g)was realized by the IL after 5-stage extraction.Moreover,the quinoline extraction efficiency could still reach 96.73%during four recycles of the IL.
基金the financial support from the Doctoral Funds of Liaoning Provincial Natural Science Foundation(201601323)
文摘The eutectic ionic liquid (EIL) tetraethyl ammonium bromide-malonic acid (TEAB-Mal) was synthesized, with its structure characterized by the FT-IR spectroscopy and the 1H NMR spectrometry. The performance for removal of basic nitrogen compounds by EIL was studied using coker diesel as the feedstock. Experimental results showed that the EIL (TEAB-Mal) exhibited a good denitrogenation performance, leading to a 93.6% of basic N-removal efficiency under reaction conditions covering: a temperature of 30 ℃, an EIL to oil mass ratio of 1:1, an extraction time of 30 min, and a settling time of 120 min, while the basic nitrogen content in diesel dropped from 580 μg/g to 37 gg/g. In addition, the efficiency for extraction of basic N-compounds could still reach 62.9% at am EIL/oil mass ratio of 1:7 after four recycles of the EIL.
基金The authors greatly acknowledge Prof.Tim Storr from Simon Fraser University for his help in English writing and improving of this paper.The work was supported by the Natural Science Foundation of Shanxi Province(201801D121062)the Shanxi Scholarship Council of China(2017-037)the Foundation of Taiyuan University of Technology(2016MS03).
文摘The promising combustion and emission properties of polyoxymethylene dimethyl ethers(PODEn)are of significant interest.However,the synthesis of PODEn products with desired chain lengths is still a problem facing synthetic PODEn.Herein,a series of unique IL@SBA16Cx solid catalysts are prepared by encapsulation of ionic liquids(ILs)within the nanocage of SBA16 through a silylation method.The structure of the encapsulated catalyst was characterized by UVvis spectra,Fourier transform infrared(FTIR),N2 adsorptiondesorption isotherms,Powder Xray diffraction(XRD),Transmission electron microscopy(TEM)and Elemental analysis.The encapsulated catalysts show similar catalytic activity to the homogeneous counterparts and display higher selectivity to the targeted PODE35 products than their homogeneous counterparts in the synthesis of PODEn from methanol(MeOH)and trioxymethylene(TOM).The encapsulated catalysts exhibit a superior PODE35 selectivity and could be the promising catalysts for PODEn synthetic reaction.
文摘The authors studied diesel combustion improvement with a reformed fuel that mixed nano air-bubbles by using an EMNB (ejector-type micro-nano bubbler). The EMNB performs adequately and is smaller (20 mm diameter, 34 mm length) than other micro-nano bubblers. It is quite possible to install it in an actual engine. An experiment was performed using a single cylinder engine with a dish or square shaped combustion chamber cavity, and in order to compare the engine speed change, we also used a four cylinder engine with a turbo-charger. The results showed that an improvement in specific fuel consumption, a decrease in the density of the exhaust smoke and an improvement in charging efficiency etc. were achieved by mixing nano bubbles into gas oil under most conditions. It is confirmed that combustion was promoted and improved by a physical and chemical action through mixing the nano bubbles into gas oil.
基金Project supported by the National Natural Science Foundation of China(51464028,51204080 and 51274108)Application Foundation Research of Yunnan Province(2014FB125)
文摘The inherent advantages of ionic liquids (ILs) in electrochemistry have received extensive attention in recent two decades. As a new generation of ILs, non-haloaluminate ILs exhibit better benefits and fewer drawbacks compared to haloaluminate based ILs, which are more qualified for metal electrodeposition, especially reactive metals. In this brief review, the recent developments regard- ing the application of non-haloaluminate ILs as solvents for low-temperature electrodeposition of rare-earth (RE) metals are outlined. In addition, the current problems and an outlook on future research are presented.
基金support from National Key R&D Program of China(No.2022YFB3805204)Joint Foundation for Science and Technology Research&Development Plan of Henan Province(Nos.222301420003 and 232301420038)+2 种基金China Postdoctoral Science Foundation(No.2022TQ0293)Key Science and Technology Project of Henan Province(No.221100240200-06)Center of Advanced Analysis&Gene Sequencing,Zhengzhou University is also highly acknowledged.
文摘Ionic liquids(ILs)hold great promise as highperformance electrolyte material due to their unique advantages including nonvolatility,high thermal stability and high ionic conductivity.However,the IL-based electrolytes always suffer from serious ion aggregation and high viscosity at low temperatures,leading to significantly decline in ionic conductivity.Here,hydrogen-bonded organic framework-ionic liquid composite quasi-solid electrolyte(high temperature treatment(HT)-HOF-IL CQSE)was prepared through confining the IL electrolytes(ILEs)into the pore of HOF lamellar framework.The weak hydrogen bonding interactions within HOF nanosheets,together with the generated interactions between ILE and HOF,enable uniform and continuous distribution of ILE in HOF lamellar framework.This effectively inhibits the ion migration of ILE,which meanwhile serves as Li+transfer sites,affording high ionic conductivity of 5.7×10^(-5)S·cm-1 at-60 ℃,with high lithium-ion transference number of 0.69,whereas ILEs usually lose ionic conduction ability at such low temperatures.The assembled Li symmetrical cell can stably cycle at 0.2 mA·cm^(-2)and^(-2)0 ℃ for more than 1500 h.The LiFePO_(4)|HT-HOF-IL CQSE|Li cell shows excellent cycling performance at 0.5 C at a wide temperature range of^(-2)0 to 60 ℃.This work may pave a new avenue for the development of high-performance IL-based composite electrolytes.