A real-time Diesel Particulate Matter (DPM) monitor has been developed on the base of the successful National In- stitute of Occupational Health and Safety (NIOSH) designed Personal Dust Monitor (PDM) unit. The ...A real-time Diesel Particulate Matter (DPM) monitor has been developed on the base of the successful National In- stitute of Occupational Health and Safety (NIOSH) designed Personal Dust Monitor (PDM) unit. The objectives of a recently completed Australian Coal Association Research Program (ACARP) study was to modify the PDM to measure the submicrometre fraction of the aerosol in a real-time monitoring underground instrument. Mine testing focused on use of the monitor in engineering evaluations of Longwall (LW) moves demonstrated how DPM concentrations from vehicles fluctuate under varying ventilation and operational conditions. The strong influence of mine ventilation systems is reviewed. Correlation between the current SKC DPM measurement system and real-time DPM monitors were conducted and results from eight mines show a correlation between elemental carbon (EC) and the new monitor DPM mass ranging from 0.45 to 0.82 with R2〉0.86 in all but two cases. This differences in suspected to be due to variations from mine to mine in aspects such as mine atmospheric contamination, vehicle fleet variations, fuel type, engine maintenance, engine combustion efficiency, engine behavior or interference from other submicrometre aerosol. Real-time monitoring clearly reflects the movement of individual diesel vehicles and allows pin-pointing of high exposure zones such as those encountered where various vehicles engage in intense work in areas of constrained or difficult ventilation. DPM shift average monitoring approaches do not readily allow successful engineering evaluation exercises to determine acceptability of pollution levels. Identification of high DPM concentration zones allows efficient modification of mine ventilation, operator positioning and other work practices to reduce miners' exposures without waiting for laboratory analysis results.展开更多
Diesel particulate matter (DPM) is considered to be carcinogenic after prolonged exposure. With more diesel- powered equipment used in underground mines, miners' exposure to DPM has become an increasing concern. Th...Diesel particulate matter (DPM) is considered to be carcinogenic after prolonged exposure. With more diesel- powered equipment used in underground mines, miners' exposure to DPM has become an increasing concern. This paper used computational fluid dynamics method to study the DPM dispersion in a dead-end entry with loading operation. The effects of different push-pull ventilation systems on DPM distribution were evaluated to improve the working conditions for underground miners. The four push-pull systems considered include: long push and short pull tubing; short push and long pull tubing, long push and curved pull tubing, and short push and curved pull tubing. A species transport model with buoyancy effect was used to examine the DPM dispersion pattern with unsteady state analysis. During the 200 s of loading operation, high DPM levels were identified in the face and dead-end entry regions. This study can be used for mining engineer as guidance to design and setup local ventilation, select DPM control strategies and for DPM annual training for underground miners.展开更多
Exposure to diesel engine exhaust(DE) is a major concern in underground mines. It has been linked to cardiopulmonary diseases and is classified as a human carcinogen. The goal of this study is to assess DE exposures i...Exposure to diesel engine exhaust(DE) is a major concern in underground mines. It has been linked to cardiopulmonary diseases and is classified as a human carcinogen. The goal of this study is to assess DE exposures in workers at two underground gold mines, to compare exposure levels within and between the mines, and to compare different methods of measuring DE exposures, namely respirable combustible dust(RCD), elemental carbon(EC) and total carbon(TC). Ambient and personal breathing zone(PBZ) measurements were taken. Side-by-side monitoring of RCD and of the respirable fraction of EC and TC(EC_Rand TC_R) was carried out in the workers' breathing zone during full-shift work.Regarding ambient measurements, in addition to EC_R, TC_Rand RCD, a submicron aerosol fraction(less than 1 mm) of EC and TC was also sampled(EC_1and TC_1). Average ambient results of 240 mg/m^3 in RCD, 150 mg/m^3 in EC_Rand 210 mg/m^3 in TC_Rare obtained. Average PBZ results of 190 mg/m^3 in RCD,84 mg/m^3 in EC3Rand 150 mg/min TC_Rare obtained. Very good correlation is found between EC_Rand EC_1 with a Pearson correlation coefficient of 0.99(p < 0.01) calculated between the two logtransformed concentrations. No differences are reported between EC_Rand EC_1, nor between TC_Rand TC_1, since ratios are equal to 1.04, close to 1, in both cases. Highest exposures are reported for loadhaul-dump(LHD) and jumbo drill operators and conventional miners. Significant exposure differences are reported between mines for truck and LHD operators(p < 0.01). The average TC_R/EC_Rratio is 1.6 for PBZ results, and 1.3 for ambient results. The variability observed in the TC_R/EC_Rratio shows that interferences from non-diesel related organic carbon can skew the interpretation of results when relying only on TC data.展开更多
In 2012,the International Agency for Research on Cancer(IARC)classified diesel particulate matter(DPM)as a carcinogen to human.With the increased usage of diesel equipment in underground mines,miners have a high risk ...In 2012,the International Agency for Research on Cancer(IARC)classified diesel particulate matter(DPM)as a carcinogen to human.With the increased usage of diesel equipment in underground mines,miners have a high risk of over-exposure to DPM,which has drawn many concerns from the public.This study used computational fluid dynamics(CFD)to analyse the DPM dispersion and concentration distribution characteristics in an underground development face based on an onsite experiment.The DPM emitted from a moving loader under a forcing auxiliary ventilation system was simulated.The motion of the load-haul-dump(LHD)in the tunnel was represented by a dynamic mesh method.The species transport approach was applied to study the DPM behaviours.High DPM concentration zones were then identified based on the simulation results.The results could provide guidelines for work practices and be helpful to an optimum auxiliary ventilation design to reduce underground miner exposure.展开更多
Diesel particulate matter(DPM) is a by-product from operating diesel engines. Since diesel powers are one of the major sources of energy for mobile underground mining equipment, the adverse health effects of DPM are o...Diesel particulate matter(DPM) is a by-product from operating diesel engines. Since diesel powers are one of the major sources of energy for mobile underground mining equipment, the adverse health effects of DPM are of a great concern. This paper used computational fluid dynamics(CFD) method to study the effect of entry inclination on DPM plume distribution in a dead end entry. An upward mining face and a downward mining face were built with a truck and a loader in loading operation close to the face area. A species transport model with incorporated buoyancy effect was used to examine the DPM dispersion pattern for the above steady-state scenarios. High DPM and temperature regions were identified for the two different faces. The model was used to assess the role of auxiliary ventilation in reducing DPM exposures of underground miners working in those entries. In this study, it is suggested to provide local ventilation at least three times of the diesel exhaust rate to be able to lower the average DPM level for the mining upward face. The requirement for local ventilation is much less for the mining downward face. This can provide guidelines for good working practices and selection of diesel emission reduction technologies underground.展开更多
Oxygenated fuels are known to reduce particulate matter(PM)emissions from diesel engines.In this study,100%soy methyl ester(SME)biodiesel fuel(B100)and a blend of 10%acetal denoted by A-diesel with diesel fuel were te...Oxygenated fuels are known to reduce particulate matter(PM)emissions from diesel engines.In this study,100%soy methyl ester(SME)biodiesel fuel(B100)and a blend of 10%acetal denoted by A-diesel with diesel fuel were tested as oxygenated fuels.Particle size and number distributions from a diesel engine fueled with oxygenated fuels and base diesel fuel were measured using an Electrical Low Pressure Impactor(ELPI).Measurements were made at ten steady-state operational modes of various loads at two engine speeds.It was found that the geometric mean diameters of particles from SME and Adiesel were lower than that from base diesel fuel.Compared to diesel fuel,SME emitted more ultra-fine particles at rated speed while emitting less ultra-fine particles at maximum speed.Ultra-fine particle number concentrations of A-diesel were much higher than those of base diesel fuel at most test modes.展开更多
The effects of a diesel oxidation catalytic (DOC) converter on diesel engine emissions were investigated on a diesel bench at various loads for two steady-state speeds using diesel fuel and B20. The DOC was very eff...The effects of a diesel oxidation catalytic (DOC) converter on diesel engine emissions were investigated on a diesel bench at various loads for two steady-state speeds using diesel fuel and B20. The DOC was very effective in hydrocarbon (HC) and CO oxidation. Approximately 90%-95% reduction in CO and 36%-70% reduction in HC were realized using the DOC. Special attention was focused on the effects of the DOC on elemental carbon (EC) and organic carbon (OC) fractions in fine particles (PM2.5) emitted from the diesel engine. The carbonaceous compositions of PM2.5 were analyzed by the method of thermal/optical reflectance (TOR). The results showed that total carbon (TC), OC and EC emissions for PM2.5 from diesel fuel were generally reduced by the DOC. For diesel fuel, TC emissions decreased 22%-32% after the DOC depending on operating modes. The decrease in TC was attributed to 35%-97% decrease in OC and 3%-65% decrease in EC emissions. At low load, a significant increase in the OC/EC ratio of PMz.5 was observed after the DOC. The effect of the DOC on the carbonaceous compositions in PM2.5 from B20 showed different trends compared to diesel fuel. At low load, a slight increase in EC emissions and a significant decrease in OC/EC ratio of PM2.5 after DOC were observed for B20.展开更多
The assessment of occupational exposure to diesel exhaust(DE) is important from an epidemiological perspective. Urinary biomarkers of exposure have been proposed as a novel approach for measuring exposure to DE. In ...The assessment of occupational exposure to diesel exhaust(DE) is important from an epidemiological perspective. Urinary biomarkers of exposure have been proposed as a novel approach for measuring exposure to DE. In this study, we measured the concentrations of two urinary metabolites of 1-nitropyrene(1NP), a nitrated polycyclic aromatic hydrocarbon that has been suggested as a molecular marker of diesel particulate matter. These two metabolites, 6-hydroxy-1-nitropyrene and 8-hydroxy-1-nitropyrene, were determined in urine samples(10 m L) from a small group of workers who were occupationally-exposed to vehicle exhaust in Trujillo, Peru, before and after their workshifts. Workshift exposures to1 NP, as well as PM_(2.5), 2-nitropyrene and 2-nitrofluoranthene, were also measured.Exposures to 1NP were similar in all studied workers, averaging 105 ± 57.9 pg/m^3(±standard deviation). Median urinary concentrations of the average of the pre- and post-exposure samples for 6-hydroxy-1-nitropyrene and 8-hydroxy-1-nitropyrene, were found to be 3.9 and 2.3 pg metabolite/mg creatinine, respectively in the group of occupationally-exposed subjects(n = 17) studied. A direct relationship between workshift exposure to 1NP and urinary 1NP metabolites concentrations was not observed. However,the 1NP exposures and the creatinine-corrected urinary concentrations of the hydroxynitropyrene metabolites in these Peruvian traffic workers were similar to occupationally-exposed taxi drivers in Shenyang, China, and were higher than biomarker levels in office workers from Trujillo without occupational exposure to vehicle exhaust.This study provides further evidence that urinary metabolites of 1NP are associated with exposure to DE and may serve as a useful exposure biomarker.展开更多
文摘A real-time Diesel Particulate Matter (DPM) monitor has been developed on the base of the successful National In- stitute of Occupational Health and Safety (NIOSH) designed Personal Dust Monitor (PDM) unit. The objectives of a recently completed Australian Coal Association Research Program (ACARP) study was to modify the PDM to measure the submicrometre fraction of the aerosol in a real-time monitoring underground instrument. Mine testing focused on use of the monitor in engineering evaluations of Longwall (LW) moves demonstrated how DPM concentrations from vehicles fluctuate under varying ventilation and operational conditions. The strong influence of mine ventilation systems is reviewed. Correlation between the current SKC DPM measurement system and real-time DPM monitors were conducted and results from eight mines show a correlation between elemental carbon (EC) and the new monitor DPM mass ranging from 0.45 to 0.82 with R2〉0.86 in all but two cases. This differences in suspected to be due to variations from mine to mine in aspects such as mine atmospheric contamination, vehicle fleet variations, fuel type, engine maintenance, engine combustion efficiency, engine behavior or interference from other submicrometre aerosol. Real-time monitoring clearly reflects the movement of individual diesel vehicles and allows pin-pointing of high exposure zones such as those encountered where various vehicles engage in intense work in areas of constrained or difficult ventilation. DPM shift average monitoring approaches do not readily allow successful engineering evaluation exercises to determine acceptability of pollution levels. Identification of high DPM concentration zones allows efficient modification of mine ventilation, operator positioning and other work practices to reduce miners' exposures without waiting for laboratory analysis results.
文摘Diesel particulate matter (DPM) is considered to be carcinogenic after prolonged exposure. With more diesel- powered equipment used in underground mines, miners' exposure to DPM has become an increasing concern. This paper used computational fluid dynamics method to study the DPM dispersion in a dead-end entry with loading operation. The effects of different push-pull ventilation systems on DPM distribution were evaluated to improve the working conditions for underground miners. The four push-pull systems considered include: long push and short pull tubing; short push and long pull tubing, long push and curved pull tubing, and short push and curved pull tubing. A species transport model with buoyancy effect was used to examine the DPM dispersion pattern with unsteady state analysis. During the 200 s of loading operation, high DPM levels were identified in the face and dead-end entry regions. This study can be used for mining engineer as guidance to design and setup local ventilation, select DPM control strategies and for DPM annual training for underground miners.
基金financially supported by the Fonds de recherche du Québec Nature et technologies (FRQNT)
文摘Exposure to diesel engine exhaust(DE) is a major concern in underground mines. It has been linked to cardiopulmonary diseases and is classified as a human carcinogen. The goal of this study is to assess DE exposures in workers at two underground gold mines, to compare exposure levels within and between the mines, and to compare different methods of measuring DE exposures, namely respirable combustible dust(RCD), elemental carbon(EC) and total carbon(TC). Ambient and personal breathing zone(PBZ) measurements were taken. Side-by-side monitoring of RCD and of the respirable fraction of EC and TC(EC_Rand TC_R) was carried out in the workers' breathing zone during full-shift work.Regarding ambient measurements, in addition to EC_R, TC_Rand RCD, a submicron aerosol fraction(less than 1 mm) of EC and TC was also sampled(EC_1and TC_1). Average ambient results of 240 mg/m^3 in RCD, 150 mg/m^3 in EC_Rand 210 mg/m^3 in TC_Rare obtained. Average PBZ results of 190 mg/m^3 in RCD,84 mg/m^3 in EC3Rand 150 mg/min TC_Rare obtained. Very good correlation is found between EC_Rand EC_1 with a Pearson correlation coefficient of 0.99(p < 0.01) calculated between the two logtransformed concentrations. No differences are reported between EC_Rand EC_1, nor between TC_Rand TC_1, since ratios are equal to 1.04, close to 1, in both cases. Highest exposures are reported for loadhaul-dump(LHD) and jumbo drill operators and conventional miners. Significant exposure differences are reported between mines for truck and LHD operators(p < 0.01). The average TC_R/EC_Rratio is 1.6 for PBZ results, and 1.3 for ambient results. The variability observed in the TC_R/EC_Rratio shows that interferences from non-diesel related organic carbon can skew the interpretation of results when relying only on TC data.
基金the Minerals Research Institute of Western Australia(M495)the computation resources provided by the Pawsey Supercomputing Centre with funding from the Australian Government and the Government of Western Australia.
文摘In 2012,the International Agency for Research on Cancer(IARC)classified diesel particulate matter(DPM)as a carcinogen to human.With the increased usage of diesel equipment in underground mines,miners have a high risk of over-exposure to DPM,which has drawn many concerns from the public.This study used computational fluid dynamics(CFD)to analyse the DPM dispersion and concentration distribution characteristics in an underground development face based on an onsite experiment.The DPM emitted from a moving loader under a forcing auxiliary ventilation system was simulated.The motion of the load-haul-dump(LHD)in the tunnel was represented by a dynamic mesh method.The species transport approach was applied to study the DPM behaviours.High DPM concentration zones were then identified based on the simulation results.The results could provide guidelines for work practices and be helpful to an optimum auxiliary ventilation design to reduce underground miner exposure.
基金financial support provided by the Western US Mining Safety and Health Training & Translation Center by the National Institute for Occupational Safety and Health of America (NIOSH) (No.1R25OH008319)
文摘Diesel particulate matter(DPM) is a by-product from operating diesel engines. Since diesel powers are one of the major sources of energy for mobile underground mining equipment, the adverse health effects of DPM are of a great concern. This paper used computational fluid dynamics(CFD) method to study the effect of entry inclination on DPM plume distribution in a dead end entry. An upward mining face and a downward mining face were built with a truck and a loader in loading operation close to the face area. A species transport model with incorporated buoyancy effect was used to examine the DPM dispersion pattern for the above steady-state scenarios. High DPM and temperature regions were identified for the two different faces. The model was used to assess the role of auxiliary ventilation in reducing DPM exposures of underground miners working in those entries. In this study, it is suggested to provide local ventilation at least three times of the diesel exhaust rate to be able to lower the average DPM level for the mining upward face. The requirement for local ventilation is much less for the mining downward face. This can provide guidelines for good working practices and selection of diesel emission reduction technologies underground.
基金the National High Technology Research and Development Program of China(863 Program)(Grant No.2006AA06A305)the National Natural Science Foundation of China(Grant No.20807025)。
文摘Oxygenated fuels are known to reduce particulate matter(PM)emissions from diesel engines.In this study,100%soy methyl ester(SME)biodiesel fuel(B100)and a blend of 10%acetal denoted by A-diesel with diesel fuel were tested as oxygenated fuels.Particle size and number distributions from a diesel engine fueled with oxygenated fuels and base diesel fuel were measured using an Electrical Low Pressure Impactor(ELPI).Measurements were made at ten steady-state operational modes of various loads at two engine speeds.It was found that the geometric mean diameters of particles from SME and Adiesel were lower than that from base diesel fuel.Compared to diesel fuel,SME emitted more ultra-fine particles at rated speed while emitting less ultra-fine particles at maximum speed.Ultra-fine particle number concentrations of A-diesel were much higher than those of base diesel fuel at most test modes.
基金This work was financially supported by the National Science Fund for Distinguished Young Scholars of China (No. 20625722) and the National Natural Science Foundation of China (Grant No. 20807025). We would also like to thank Prof. Yunshan Ge from Beijing Institute of Technology for the significant in-kind support on the engine test and thank Mr. Charles N. Freed for useful comments on this work.
文摘The effects of a diesel oxidation catalytic (DOC) converter on diesel engine emissions were investigated on a diesel bench at various loads for two steady-state speeds using diesel fuel and B20. The DOC was very effective in hydrocarbon (HC) and CO oxidation. Approximately 90%-95% reduction in CO and 36%-70% reduction in HC were realized using the DOC. Special attention was focused on the effects of the DOC on elemental carbon (EC) and organic carbon (OC) fractions in fine particles (PM2.5) emitted from the diesel engine. The carbonaceous compositions of PM2.5 were analyzed by the method of thermal/optical reflectance (TOR). The results showed that total carbon (TC), OC and EC emissions for PM2.5 from diesel fuel were generally reduced by the DOC. For diesel fuel, TC emissions decreased 22%-32% after the DOC depending on operating modes. The decrease in TC was attributed to 35%-97% decrease in OC and 3%-65% decrease in EC emissions. At low load, a significant increase in the OC/EC ratio of PMz.5 was observed after the DOC. The effect of the DOC on the carbonaceous compositions in PM2.5 from B20 showed different trends compared to diesel fuel. At low load, a slight increase in EC emissions and a significant decrease in OC/EC ratio of PM2.5 after DOC were observed for B20.
基金supported in part by grant number R21-ES014917 from the National Institute of Environmental Health Sciences (NIEHS), NIH USA
文摘The assessment of occupational exposure to diesel exhaust(DE) is important from an epidemiological perspective. Urinary biomarkers of exposure have been proposed as a novel approach for measuring exposure to DE. In this study, we measured the concentrations of two urinary metabolites of 1-nitropyrene(1NP), a nitrated polycyclic aromatic hydrocarbon that has been suggested as a molecular marker of diesel particulate matter. These two metabolites, 6-hydroxy-1-nitropyrene and 8-hydroxy-1-nitropyrene, were determined in urine samples(10 m L) from a small group of workers who were occupationally-exposed to vehicle exhaust in Trujillo, Peru, before and after their workshifts. Workshift exposures to1 NP, as well as PM_(2.5), 2-nitropyrene and 2-nitrofluoranthene, were also measured.Exposures to 1NP were similar in all studied workers, averaging 105 ± 57.9 pg/m^3(±standard deviation). Median urinary concentrations of the average of the pre- and post-exposure samples for 6-hydroxy-1-nitropyrene and 8-hydroxy-1-nitropyrene, were found to be 3.9 and 2.3 pg metabolite/mg creatinine, respectively in the group of occupationally-exposed subjects(n = 17) studied. A direct relationship between workshift exposure to 1NP and urinary 1NP metabolites concentrations was not observed. However,the 1NP exposures and the creatinine-corrected urinary concentrations of the hydroxynitropyrene metabolites in these Peruvian traffic workers were similar to occupationally-exposed taxi drivers in Shenyang, China, and were higher than biomarker levels in office workers from Trujillo without occupational exposure to vehicle exhaust.This study provides further evidence that urinary metabolites of 1NP are associated with exposure to DE and may serve as a useful exposure biomarker.