期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Application of bacteria-plant association in bio-degradation of diesel oil pollutants in soil 被引量:2
1
作者 Lu, Sijin Teng, Yanguo +1 位作者 Sun, Zongjian Wang, Jinsheng 《Chinese Journal Of Geochemistry》 EI CAS 2011年第2期220-225,共6页
The bacteria and plants were associated to remove diesel oil pollutants from soil.Three efficiently degrading bacteria(named strains Q10,Q14 and Q18,respectively) were isolated.Two plants(alfalfa and Indian mustard) w... The bacteria and plants were associated to remove diesel oil pollutants from soil.Three efficiently degrading bacteria(named strains Q10,Q14 and Q18,respectively) were isolated.Two plants(alfalfa and Indian mustard) were selected to form the association.Biodegradation of diesel oil pollutants in soil was accelerated by bacteria-plants association.The main results are summarized as follows.The plants-bacteria association was more effective in biodegradation of diesel oil pollutants in soil than in respective experiments carried out with plants or bacteria alone.Strain Q18-Indian mustard association resulted in the maximum diesel oil reduction(69.18%).The activities of catalase and polyphenol oxidase in soil were enhanced and microbial populations in soil,especially in rhizosphere,were also stimulated in the treatment of bacteria-plant association.Overall,the soil conditions might be improved by alfalfa or Indian mustard to benefit the growth of bacteria,which resulted in degradation of diesel oil pollutants more effective by the bacteria-plant association.The bacteria-plants association may be a better approach to the removal of diesel oil pollutants from soil. 展开更多
关键词 bacteria-plant association BIODEGRADATION diesel oil pollutant SOIL
下载PDF
Wetland bacteria isolated from Huangpu River-Yangtze River estuary and its degradation on diesel 被引量:1
2
作者 王珍珍 刘晓艳 +4 位作者 张新颖 王君 曹正楠 钟成林 苏鹏程 《Journal of Shanghai University(English Edition)》 CAS 2010年第4期292-296,共5页
Oil contaminated soil was collected from Huangpu River-Yangtze River estuary wetland, with the aim of isolating oil-degrading microorganisms and evaluating their ability to degrade diesel. Three bacterial strains were... Oil contaminated soil was collected from Huangpu River-Yangtze River estuary wetland, with the aim of isolating oil-degrading microorganisms and evaluating their ability to degrade diesel. Three bacterial strains were discovered and identified by sequencing their 16S rDNA genes, two were Pseudomonas and one was Alcaligcnes. The proper growth conditions of each bacterium were measured and presented for diesel biodegradation. Biodegradation assays revealed that the degradation rates of three bacterial strains were 42.5%, 14.6% and 15.9% in 7 d respectively. They all play an important role on the nalkanes within the range of C16-C25 components of diesel. The results indicated that the oil-degraders can adapt to degrade diesel. The bacterial strains can be used in wetland diesel pollution control. 展开更多
关键词 Huangpu River-Yangtze River estuary WETLAND diesel pollutant oil-degrading bacteria
下载PDF
Phytoremediation potential of Cyperus rotundus for diesel-contaminated wetland
3
作者 王君 刘晓艳 +4 位作者 张新颖 王珍珍 曹正楠 钟成林 苏鹏程 《Journal of Shanghai University(English Edition)》 CAS 2010年第5期326-331,共6页
Oil spills may considerably damage sensitive coastal wetlands. The phytoremediation potential and restoration of a dominant coastal marsh plant, Cyperus rotundus, for diesel pollutant and its phytoremediation effectiv... Oil spills may considerably damage sensitive coastal wetlands. The phytoremediation potential and restoration of a dominant coastal marsh plant, Cyperus rotundus, for diesel pollutant and its phytoremediation effectiveness were investigated in this open-air pot experiment. Cyperus rotundus was transplanted into soil contaminated with diesel at concentrations of 1 000, 5 000, 10 000, 15 000, 20 000 mg/kg. In order to better elucidate the biochemical and physiological responses to diesel pollutants, activity of the antioxidant enzymes peroxidase (POD), catalase (CAT) and ascorbic acid oxidase (AAO) were determined in the plant tissue after 50 d treatment at the levels mentioned above. The results showed that CAT and AAO of stem and leaf exhibited peak enzyme activities on 15 000 mg/kg soil and 10 000 mg/kg soil respectively, and declined at higher concentrations. Additionally, the increment of biomass and the content of soluble protein, as well as chlorophyll content were affected by diesel. The highest restoration effectiveness appeared at the level of 5 000 mg/kg. Collectively, Cyperus rotundus is a potential plant which can be used for restoring the diesel-contaminated soil. 展开更多
关键词 PHYTOREMEDIATION Cyperus rotundus diesel pollutants WETLAND pot experiment
下载PDF
Preparation of Ordered Mesoporous Nanocrystalline Ceria and Ceria-zirconia for Soot Oxidation
4
作者 杨鹏 ZHOU Shiyu 雷家珩 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第1期113-117,共5页
Ordered mesoporous ceria and ceria-zirconia with high specific surface area were prepared by nanocasting of a mesoporous silica KIT-6 template and used for soot oxidation.The as-synthesized ordered mesoporous ceria an... Ordered mesoporous ceria and ceria-zirconia with high specific surface area were prepared by nanocasting of a mesoporous silica KIT-6 template and used for soot oxidation.The as-synthesized ordered mesoporous ceria and ceria-zirconia were characterized by XRD,TEM,Nitrogen adsorption-desorption,Raman spectroscopy,and XRF.The results indicate that mesoporous ceria and ceria-zirconia possess highly ordered mesoporous structure,and exhibited excellent catalytic performance in soot oxidation.T_(50) of mesoporous ceria and ceria-zirconia are 475 and 470 ℃,respectively.The high catalytic activity of mesoporous materials can be attributed to the mesoporous structure and small crystallite size.Moreover,aged mesoporous materials exhibit high catalytic activity. 展开更多
关键词 mesoporous ceria mesoporous ceria-zirconia soot oxidation diesel pollution control
下载PDF
Effect of yttrium and manganese addition on catalytic soot combustion activity and anti-high-temperature stability of CeO_(2) catalyst
5
作者 Yi Zhu Xingyu Liu +6 位作者 Wei Shi Jia Li Changbing Ye Ruimei Fang Huifeng Zhu Shanhu Chen Li Lan 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第2期334-344,I0004,共12页
In order to analyze the influence of the addition of yttrium and manganese on the soot combustion performance and high temperature stability of CeO_(2) catalyst,a series of Y/Mn-modified CeO_(2) catalysts were prepare... In order to analyze the influence of the addition of yttrium and manganese on the soot combustion performance and high temperature stability of CeO_(2) catalyst,a series of Y/Mn-modified CeO_(2) catalysts were prepared.The effects of structural properties,textural properties,oxygen vacancies,Ce^(3+),surface adsorbed oxygen species,reduction properties and desorption properties of oxygen species on the activity were analyzed by various characterization methods.The results of the activity test show that the addition of manganese is beneficial to enhancement of the activity,while the addition of yttrium increases the amount of reactive oxygen species,but decreases the activity.After aging at 700℃,the activity of the CeMn catalyst decreases most sharply,while the catalytic activity of the CeY catalyst can be maintained to a certain extent.Interestingly,the addition of yttrium and manganese at the same time can stabilize the activity.The fundamental reason is that yttrium and manganese move to the surface of the solid solution after aging,which increases the reduction performance of the catalyst,thus contributing to the increase of activity.Although the activity of CeYMn catalyst decreases after aging at 800℃,it is still higher than that of other catalysts aged at 700℃. 展开更多
关键词 CeO_(2)catalyst Soot catalytic combustion diesel pollution control Rare earths High temperature stability Low temperature reduction performance
原文传递
Effect of surface manganese oxide species on soot catalytic combustion of Ce-Mn-O catalyst 被引量:2
6
作者 Yi Zhu Quan Wang +2 位作者 Li Lan Shanhu Chen Jingjing Zhang 《Journal of Rare Earths》 SCIE EI CAS CSCD 2022年第8期1238-1246,共9页
Constructing cerium and manganese bimetallic catalysts with excellent catalytic performance for soot combustion is the research frontier at present.In order to find out the key factors for catalytic soot combustion of... Constructing cerium and manganese bimetallic catalysts with excellent catalytic performance for soot combustion is the research frontier at present.In order to find out the key factors for catalytic soot combustion of Ce-Mn-O catalysts,a series of Ce-Mn-O catalysts with different Ce/Mn proportions were prepared by co-precipitation method.The activity test results show that it increases first and then decreases with the increase of Mn content.The best catalytic activity is obtained for Ce_(0.64)Mn_(0.36) catalyst,which shows a maximum rate temperature(T_(m)) at 306℃ for CO_(2) production in TPO curve.Compared with non-catalytic soot combustion,the T_(m) decreases by mo re than 270℃.Syste matical characte rization results suggest that when the adsorbed surface oxygen,lattice oxygen,specific surface area and total reduction amount of the catalysts reach a certain value,the key factors leading to the difference of catalytic activity become the readily reducible and highly dispersed surface manganese oxide species and contact performance of the external surface.The surface manganese oxide species is beneficial to improving the low-temperature reducibility of catalysts and the porous surface is conducive to the contact between catalyst and soot.Furthermore,for the soot combustion reaction containing only O_(2),the promoting effect of Mn^(4+)is not obvious. 展开更多
关键词 Ce-Mn-O catalyst Soot catalytic combustion Surface manganese oxides Contact performance diesel pollution control Rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部