In this paper, we study the best-mixture ratio of biodiesel-ethanol-diesel for diesel engines. The simulation results show that the integrated indexes including engine power, cost-effectiveness and emission properties...In this paper, we study the best-mixture ratio of biodiesel-ethanol-diesel for diesel engines. The simulation results show that the integrated indexes including engine power, cost-effectiveness and emission properties are rather better with different optimizing index when the ratio of bio-diesel, ethanol and diesel are 71.58:2.72:25.70 and 50:2.4127:47.5873.展开更多
Energy efficiency and environmental impact have become dominant topics in internal combustion engines development. Among many strategies to improve power and emissions outputs from diesel engines is the partial mix of...Energy efficiency and environmental impact have become dominant topics in internal combustion engines development. Among many strategies to improve power and emissions outputs from diesel engines is the partial mix of hydrogen and air as fresh charge components to form extremely lean and homogenous mixture, which resist the spontaneous combustion, while diesel fuel is injected directly inside combustion chamber using the conventional fuel injection systems. This contribution presents an analytical and experimental investigation for the effects of adding hydrogen on diesel engines power output and the reduction of emissions. Parametric analysis is used based on lamped parameters modeling of intake manifold to estimate in cylinder trapped charge. The fuel energy flow to engine cylinders is compared for a range of loads and concentrations to simulate relevant case studies. Diesel fuel reduction for significant range of part-load operation can be achieved by introducing hydrogen, along with power improvement emission reductions are affected positively as well. This is achievable without compromising the engine maximum efficiency, given that most engines are operated at small and part-load during normal driving conditions, which allow for introducing more hydrogen instead of large quantities of excess air during such operation conditions that also can be further improved by charge boosting.展开更多
文摘In this paper, we study the best-mixture ratio of biodiesel-ethanol-diesel for diesel engines. The simulation results show that the integrated indexes including engine power, cost-effectiveness and emission properties are rather better with different optimizing index when the ratio of bio-diesel, ethanol and diesel are 71.58:2.72:25.70 and 50:2.4127:47.5873.
文摘Energy efficiency and environmental impact have become dominant topics in internal combustion engines development. Among many strategies to improve power and emissions outputs from diesel engines is the partial mix of hydrogen and air as fresh charge components to form extremely lean and homogenous mixture, which resist the spontaneous combustion, while diesel fuel is injected directly inside combustion chamber using the conventional fuel injection systems. This contribution presents an analytical and experimental investigation for the effects of adding hydrogen on diesel engines power output and the reduction of emissions. Parametric analysis is used based on lamped parameters modeling of intake manifold to estimate in cylinder trapped charge. The fuel energy flow to engine cylinders is compared for a range of loads and concentrations to simulate relevant case studies. Diesel fuel reduction for significant range of part-load operation can be achieved by introducing hydrogen, along with power improvement emission reductions are affected positively as well. This is achievable without compromising the engine maximum efficiency, given that most engines are operated at small and part-load during normal driving conditions, which allow for introducing more hydrogen instead of large quantities of excess air during such operation conditions that also can be further improved by charge boosting.