Coprinus comatus polysaccharide(CCP)has significant hepatoprotective effect.To explore hepatoprotective mechanism of CCP,the study analyzed preventive effect of CCP on acute alcoholic liver injury in mice by histopath...Coprinus comatus polysaccharide(CCP)has significant hepatoprotective effect.To explore hepatoprotective mechanism of CCP,the study analyzed preventive effect of CCP on acute alcoholic liver injury in mice by histopathological examination and biochemical analysis.Simultaneously,hepatoprotective mechanism was also analyzed in conjunction with metabolomics and proliferation of gut microbiota.The results showed that CCP significantly decreased alanine aminotransferase(ALT),aspartate aminotransferase(AST)and triglyceride(TG)levels in serum of alcoholic liver disease(ALD)mice.Histopathological examination showed that CCP can significantly improve liver damage.Metabolomics results showed that there were significant differences in the level of metabolites in liver tissue of control group,ALD group and CCP group,including taurine,xanthosine,fumaric acid and arachidonic acid,among others.Metabolites pathways analysis showed that hepatoprotective effect of CCP was related to energy metabolism,biosynthesis of unsaturated fatty acids,amino acids metabolism and lipid metabolism.Additionally,CCP inhibited an increase in the number of Clostridium perfringens,Enterobacteriaceae and Enterococcus,and a decrease in the number of Lactobacillus and Bifidobacterium in the gut of ALD mice.All these findings suggested that CCP treatment reversed the phenotype of ethanol-induced liver injury and the associated metabolites pathways.展开更多
Hydrogel-based tissue-engineered skin has attracted increased attention due to its potential to restore the structural integrity and functionality of skin.However,the mechanical properties of hydrogel scaffolds and na...Hydrogel-based tissue-engineered skin has attracted increased attention due to its potential to restore the structural integrity and functionality of skin.However,the mechanical properties of hydrogel scaffolds and natural skin are substantially different.Here,we developed a polyvinyl alcohol(PVA)/acrylamide based interpenetrating network(IPN)hydrogel that was surface modified with polydopamine(PDA)and termed Dopa-gel.The Dopa-gel exhibited mechanical properties similar to native skin tissue and a superior ability to modulate paracrine functions.Furthermore,a tough scaffold with tensile resistance was fabricated using this hydrogel by three-dimensional printing.The results showed that the interpenetration of PVA,alginate,and polyacrylamide networks notably enhanced the mechanical properties of the hydrogel.Surface modification with PDA endowed the hydrogels with increased secretion of immunomodulatory and proangiogenic factors.In an in vivo model,Dopa-gel treatment accelerated wound closure,increased vascularization,and promoted a shift in macrophages from a proinflammatory M1 phenotype to a prohealing and anti-inflammatory M2 phenotype within the wound area.Mechanistically,the focal adhesion kinase(FAK)/extracellular signal-related kinase(ERK)signaling pathway may mediate the promotion of skin defect healing by increasing paracrine secretion via the Dopa-gel.Additionally,proangiogenic factors can be induced through Rho-associated kinase-2(ROCK-2)/vascular endothelial growth factor(VEGF)-mediated paracrine secretion under tensile stress conditions.Taken together,these findings suggest that the multifunctional Dopa-gel,which has good mechanical properties similar to those of native skin tissue and enhanced immunomodulatory and angiogenic properties,is a promising scaffold for skin tissue regeneration.展开更多
The fruit of Morinda citrifolia L., commonly known as noni, has an extensive history of use as a food and traditional medicine around the world. Adding value to Morinda citrifolia L. products, particularly the fruit, ...The fruit of Morinda citrifolia L., commonly known as noni, has an extensive history of use as a food and traditional medicine around the world. Adding value to Morinda citrifolia L. products, particularly the fruit, could be one way of building resilience in vulnerable farming households. The aim of this study was to determine the secondary metabolite and mineral composition of noni juice obtained by fermenting the fruit of Morinda citrifolia L. Fruits were collected in August 2022 from the local field in Thiès region, West of Senegal. Extraction yields were determined and the secondary metabolites were determined using conventional analytical methods. Calcium, magnesium, iron, sodium and potassium were determined by atomic absorption spectrophotometer coupled with a CCD detector. The results show that an average fruit mass (503.2 ± 110.96 g) consists of 171.44 ± 50.01 g pulp and 34.06 ± 10.35 g seeds. The traditional extraction yield of noni juice is 16.46% after three weeks of fermentation. The contents of total polyphenols, flavonoids and tannins obtained in noni are 608.97 ± 4.53 mg EAG/100mL, 7.78 ± 0.01 mg EQ/100mL and 0.191 ± 0.01 mg EC/100mL respectively. The ethanol content of noni varies from 3.57 to 5.23 mL/100mL during extraction. Noni has a high calcium content with a concentration of 383.79 ± 33.23 mg/L. This is followed by a good concentration of magnesium, potassium and sodium, at 278.47 ± 26.30, 187.43 ± 10.7 and 155.95 ± 28.66 mg/L respectively. Noni also has an iron content of 202.15 ± 0.05 mg/L.展开更多
For the deep understanding on combustion of ammonia/diesel,this study develops a reduced mechanism of ammonia/diesel with 227 species and 937 reactions.The sub-mechanism on ammonia/interactions of N-based and C-based ...For the deep understanding on combustion of ammonia/diesel,this study develops a reduced mechanism of ammonia/diesel with 227 species and 937 reactions.The sub-mechanism on ammonia/interactions of N-based and C-based species(N—C)/NOx is optimized using the Non-dominated Sorting Genetic Algorithm II(NSGA-II)with 200 generations.The optimized mechanism(named as 937b)is validated against combustion characteristics of ammonia/methane(which is used to examine the accuracy of N—C interactions)and ammonia/diesel blends.The ignition delay times(IDTs),the laminar flame speeds and most of key intermediate species during the combustion of ammonia/methane blends can be accurately simulated by 937b under a wide range of conditions.As for ammonia/diesel blends with various diesel energy fractions,reasonable predictions on the IDTs under pressures from 1.0 MPa to5.0 MPa as well as the laminar flame speeds are also achieved by 937b.In particular,with regard to the IDT simulations of ammonia/diesel blends,937b makes progress in both aspects of overall accuracy and computational efficiency,compared to a detailed ammonia/diesel mechanism.Further kinetic analysis reveals that the reaction pathway of ammonia during the combustion of ammonia/diesel blend mainly differs in the tendencies of oxygen additions to NH_2 and NH with different equivalence ratios.展开更多
Objective: Utilizing Mendelian Randomization, this study employs Single Nucleotide Polymorphisms (SNPs) as instrumental variables to explore the causal relationships between bibulosity, smoking, and Primary Open Angle...Objective: Utilizing Mendelian Randomization, this study employs Single Nucleotide Polymorphisms (SNPs) as instrumental variables to explore the causal relationships between bibulosity, smoking, and Primary Open Angle Glaucoma (POAG). Methods: GWAS data for bibulosity, smoking, and POAG were obtained from the Social Science Genetic Association Consortium website and the IEU OpenGWAS Project website, respectively. Using a P-value threshold of −8, a linkage disequilibrium coefficient (r2) of 0.001, and a linkage disequilibrium region width of 10,000 kb, the data were aggregated, resulting in 6 SNPs for bibulosity and 253 SNPs for smoking. Three regression models, MR-Egger, Weighted Median Estimator (WME), and Random-Effects Inverse-Variance Weighted (IVW) were applied to analyze the causal impact of bibulosity and smoking on POAG. Results: The GWAS data for alcohol consumption and smoking were derived from European populations, while the GWAS data for Primary Open-Angle Glaucoma (POAG) were sourced from East Asian populations, with no gender restrictions. Analysis using three different regression models revealed that neither excessive alcohol consumption nor smoking significantly increased the risk of developing POAG. Specifically, the odds ratios with 95% confidence intervals for the alcohol consumption group were 0.854 (0.597 - 1.221) in MR-Egger regression, 0.922 (0.691 - 1.231) in WME regression, and 0.944 (0.711 - 1.252) in IVW regression. For the smoking group, the odds ratios were 1.146 (0.546 - 2.406) in MR-Egger regression, 0.850 (0.653 - 1.111) in WME regression, and 0.939 (0.780 - 1.131) in IVW regression. Given the significant heterogeneity in the SNPs associated with smoking, the focus was primarily on the results from the IVW regression model. Conclusion: Alcohol consumption and smoking are not significant risk factors for the development of POAG.展开更多
BACKGROUND Oxidative stress is closely associated with hypertensive outcomes.The oxidative balance score(OBS)measures oxidative stress exposure from dietary and lifestyle elements.The objective of this study was to in...BACKGROUND Oxidative stress is closely associated with hypertensive outcomes.The oxidative balance score(OBS)measures oxidative stress exposure from dietary and lifestyle elements.The objective of this study was to investigate the association between OBS and mortality in hypertensive patients.METHODS This study included 7823 hypertensive patients from the National Health and Nutrition Examination Survey(NHA-NES)1999-2014.Several models,including Cox regression,restricted cubic splines(RCS),Kaplan-Meier survival analysis,subgroup,and sensitivity analyses,were exploited to investigate the relationship between OBS and the risk of mortality.RESULTS Controlling for all potential confounders,a significantly inverse association was observed between elevated OBS and all-cause[hazard ratio(HR)=0.90,95%CI:0.85-0.95]and cardiovascular mortality(HR=0.85,95%CI:0.75-0.95).With adjustment for covariates,significant associations between lifestyle OBS and mortality risks diminished,whereas associations between dietary OBS and these mortality risks remained robust(all-cause mortality:HR=0.91,95%CI:0.86-0.96;cardiovascular mortality:HR=0.85,95%CI:0.76-0.96).RCS demonstrated a linear relationship between OBS and all-cause and cardiovascular mortality risk(P_(nonlinear)=0.088 and P_(nonlinear)=0.447,respectively).Kaplan-Meier curves demonstrated that the mortality rate was lower with a high OBS(P<0.001).The consistency of the association was demonstrated in subgroup and sensitivity analyses.RCS after stratification showed that among current drinkers,those with higher OBS had a lower risk of mortality compared with former or never drinkers.CONCLUSIONS In hypertensive individuals,there was a negative association between OBS and all-cause and cardiovascular mortality.Encouraging hypertensive individuals,especially those currently drinking,to maintain high levels of OBS may be beneficial in improving their prognosis.展开更多
The millimeter-scale capsules with controllable morphology,ultra-low permeability and excellent mechanical stability were fabricated by millifluidics.Viscosity of inner phase was adjusted to control the morphology and...The millimeter-scale capsules with controllable morphology,ultra-low permeability and excellent mechanical stability were fabricated by millifluidics.Viscosity of inner phase was adjusted to control the morphology and properties of the capsules.In detail,as the concentration of polyvinyl alcohol(PVA)increased from 0 to 8% in the inner phase of the capsules,the diameter of capsules decreased from 3.33 ± 0.01mm to 2.97 ± 0.01 mm,the shell thickness of capsules decreased from 0.183 ± 0.004 mm to 0.155 ± 0.003 mm.While the capsules had round shape and high sphericity.Notably,the capsules with 2% PVA in the inner phase had remarkably decreased water permeability and good morphological stability.Specifically,the end-time of water losing of the capsules was up to 49 days,while the dehydrated capsules maintained spherical appearance,and crushing force of the capsules was up to 13.73 ± 0.79 N,which ensured stability during processing and transportation.This research provides a new strategy for stable encapsulation of small molecules.展开更多
Sea cucumber saponins have attracted more attention in recent years due to biological activities.It is a popular practice to soak sea cucumber in Baijiu at home and being applied to industrial manufacturing in China.H...Sea cucumber saponins have attracted more attention in recent years due to biological activities.It is a popular practice to soak sea cucumber in Baijiu at home and being applied to industrial manufacturing in China.However,knowledge of the effect of alcohol on the absorption and metabolism of sea cucumber saponins is limited.The effects of alcohol on digestion,absorption and metabolism of sea cucumber saponins in BALB/c mice were investigated after gavage and tail intravenous injection.The results showed that the content of saponins in serum and liver was significantly higher under the influence of alcohol than that in the control group after oral administration.Alcohol promoted the absorption of sea cucumber saponins prototype as well as inhibited the process of saponins being transformed into deglycositic metabolites in the small intestine.Moreover,sea cucumber saponins remained in circulation for a long time and alcohol slowed down the clearance of sea cucumber saponins under the influence of alcohol after intravenous injection.This confirmed the feasibility of marinating sea cucumber in Baijiu to improve the efficacy of saponins and provides an important theoretical basis for the utilization of sea cucumber and the development of sea cucumber liquor.展开更多
A three-lumping Langmuir-Hinshelwood kinetic model was established based on the structures and reactivities of sulfur compounds.This model described the ultra-deep hydrodesulfurization(UDHDS)performance of diesel,redu...A three-lumping Langmuir-Hinshelwood kinetic model was established based on the structures and reactivities of sulfur compounds.This model described the ultra-deep hydrodesulfurization(UDHDS)performance of diesel,reducing sulfur content from 10000μg/g to less than 10μg/g,with experimental and predicted data showing a discrepancy of less than 10%.The diesel UDHDS reaction was simulated by combining the mass transfer,reaction kinetics model,and physical properties of diesel.The results showed how the concentrations of H2S,hydrogen,and sulfur in the gas,liquid,and solid phases varied along the reactor length.Moreover,the study discussed the effects of each process parameter and impurity concentrations(H2S,basic nitrogen and,non-basic nitrogen)on diesel UDHDS.展开更多
The transition from non-renewable to renewable energy sources is a significant challenge of our time. In the fuel industry, oxygenated additives such as butanol are transforming conventional fuels into renewable biofu...The transition from non-renewable to renewable energy sources is a significant challenge of our time. In the fuel industry, oxygenated additives such as butanol are transforming conventional fuels into renewable biofuels. This technology has been utilized in reciprocating engines for decades. This paper reviews the viability of using an n-butanol blend as a short-term replacement for diesel by analyzing its physical and chemical properties, combustion, performance, and emission characteristics in compression ignition (CI) engines under various conditions, including variable load, speed, acceleration, and both stationary and transient cycles. N-Butanol exhibits higher viscosity, better lubricity, higher heating value, improved blend stability, enhanced cold-flow properties, and higher density. These factors influence spray formation, injection timing, atomization, and combustion characteristics. Its higher oxygen content improves the diffusion combustion stage and efficiency. Adding 5% and 10% n-butanol to diesel increases pressure and apparent heat release rate, slightly reduces temperature, and improves thermal efficiency, with mixed effects on CO and THC emissions and a notable decrease in particulate matter emissions. Fuel consumption increases, while the impact on NOx emissions varies. A 10% butanol blend is considered optimal for enhancing performance and reducing particulate emissions without significantly affecting NOx emissions. Blending up to 40% butanol with diesel does not require engine modifications or ECU recalibrations in engines calibrated for pure diesel. Due to its advantageous properties and performance, n-butanol is recommended as a superior alcohol-diesel blend than ethanol for short-term diesel replacement.展开更多
This review delves into the detrimental impact of alcohol consumption on internal organs and reproductive health,elucidating the underlying mechanisms involving the Toll-like receptor 4(TLR4)/Nuclear factor kappa ligh...This review delves into the detrimental impact of alcohol consumption on internal organs and reproductive health,elucidating the underlying mechanisms involving the Toll-like receptor 4(TLR4)/Nuclear factor kappa light chain enhancer of activated B cells(NF-kB)pathway and the Cytochrome P4502E1(CYP2E1)/reactive oxygen spe-cies(ROS)/nuclear factor erythroid 2-related factor 2(Nrf2)pathways.The TLR4/NF-kB pathway,crucial for inflammatory and immune responses,triggers the production of pro-inflammatory agents and type-1 interferon,disrupting the balance between inflammatory and antioxidant responses when tissues are chronically exposed to al-cohol.Alcohol-induced dysbiosis in gut microbes heightens gut wall permeability to pathogen-associated molecular patterns(PAMPs),leading to liver cell infection and subsequent inflammation.Concurrently,CYP2E1-mediated alcohol metabolism gen-erates ROS,causing oxidative stress and damaging cells,lipids,proteins,and deoxy-ribonucleic acid(DNA).To counteract this inflammatory imbalance,Nrf2 regulates gene expression,inhibiting inflammatory progression and promoting antioxidant re-sponses.Excessive alcohol intake results in elevated liver enzymes(ADH,CYP2E1,and catalase),ROS,NADH,acetaldehyde,and acetate,leading to damage in vital organs such as the heart,brain,and lungs.Moreover,alcohol negatively affects reproduc-tive health by inhibiting the hypothalamic-pituitary-gonadal axis,causing infertility in both men and women.These findings underscore the profound health concerns associated with alcohol-induced damage,emphasizing the need for public awareness regarding the intricate interplay between immune responses and the multi-organ im-pacts of alcohol consumption.展开更多
The aim of this study was to investigate the oxidation reactivity and behavior of exhaust particulate matter(PM)from diesel engines.PM samples from two diesel engines(1K,CY4102)with different emission levels were coll...The aim of this study was to investigate the oxidation reactivity and behavior of exhaust particulate matter(PM)from diesel engines.PM samples from two diesel engines(1K,CY4102)with different emission levels were collected by a thermophoretic system and a quartz filter.The oxidation reactivity,oxidation behaviors,and physicochemical properties of the PM samples were analyzed using thermogravimetric analysis(TGA),high-resolution transmission electron microscopy(HRTEM),Fourier-transform infrared spectrometry(FTIR),and Raman spectroscopy.The results showed that there was a great difference in the oxidation reactivity of soot particles emitted by the two different diesel engines.A qualitative analysis of the factors influencing oxidation reactivity showed that the nanostructure,degree of graphitization,and relative concentration of aliphatic C—H functional groups were the most important factors,whereas no significant correlation was found between the primary particle size and activation energy of the diesel soot.Based on the oxidation behavior analysis,the diesel soot particles exhibited both internal and surface oxidation modes during the oxidation process.Surface oxidation was dominant during the initial stage,and as oxidation progressed,the mode gradually changed to internal oxidation.Internal oxidation mode of soot particles from the 1K engine was significantly higher than that of CY4102.展开更多
The Miller cycle is a program that effectively reduces NOx emissions from marine diesel engines by lowering the maximum combustion temperature in the cylinder,thereby reducing NOx emissions.To effectively investigate ...The Miller cycle is a program that effectively reduces NOx emissions from marine diesel engines by lowering the maximum combustion temperature in the cylinder,thereby reducing NOx emissions.To effectively investigate the impact of Miller cycle optimum combustion performance and emission capability under high load conditions,this study will perform a one-dimensional simulation of the performance of a marine diesel engine,as well as a threedimensional simulation of the combustion in the cylinder.A 6-cylinder four-stroke single-stage supercharged diesel engine is taken as the research object.The chassis dynamometer and other related equipment are used to build the test system,carry out the diesel engine bench test,and collect experimental data.The simulation results are compared with the test results,and the error is less than 5%.In this study,the authors will use simulation software to simulate several Miller cycle scenarios designed for early inlet valve closure and analyze the impact of the Miller cycle on combustion and emissions at 100%load conditions.By comparing the flow field distribution of the engine at 1500 r/min condition,it was found that proper EIVC can prolong the ignition latency period and homogeneous fuel-air mixture combustion acceleration,but it can reduce pressure and temperature within the piston chamber and NOx emission.However,the Miller cycle reduces end-of-compression temperatures,which increases combustion duration and exhaust temperatures,making it difficult to improve fuel economy at the optimum fuel consumption point,and closing the intake valves prematurely leads to excessive fuel expenditure.Furthermore,temperature and heat release rate within the piston chamber,NOx,and SOOT generation were significantly enhanced.展开更多
The interactions between lignin oligomers and solvents determine the behaviors of lignin oligomers self-assembling into uniform lignin nanoparticles(LNPs).Herein,several alcohol solvents,which readily interact with th...The interactions between lignin oligomers and solvents determine the behaviors of lignin oligomers self-assembling into uniform lignin nanoparticles(LNPs).Herein,several alcohol solvents,which readily interact with the lignin oligomers,were adopted to study their effects during solvent shifting process for LNPs’production.The lignin oligomers with widely distributed molecular weight and abundant guaiacyl units were extracted from wood waste(mainly consists of pine wood),exerting outstanding self-assembly capability.Uniform and spherical LNPs were generated in H_(2)O-n-propanol cosolvent,whereas irregular LNPs were obtained in H_(2)O-methanol cosolvent.The unsatisfactory self-assembly performance of the lignin oligomers in H_(2)O-methanol cosolvent could be attributed to two aspects.On one hand,for the initial dissolution state,the distinguishing Hansen solubility parameter and polarity between methanol solvent and lignin oligomers resulted in the poor dispersion of the lignin oligomers.On the other hand,strong hydrogen bonds between methanol solvent and lignin oligomers during solvent shifting process,hindered the interactions among the lignin oligomers for self-assembly.展开更多
This paper examines project⁃based policies and regulations implemented globally to control and mitigate emissions from diesel⁃powered construction equipment.This study systematically reviews and analyzes various manag...This paper examines project⁃based policies and regulations implemented globally to control and mitigate emissions from diesel⁃powered construction equipment.This study systematically reviews and analyzes various managerial,regulatory,and technical measures adopted across countries and regions,mostly of advanced economy.Key strategies of control include setting emission thresholds,idling restrictions,perform remote online monitoring,operational time limits,setting low emission zones,and enforced registration systems.The review highlights the rationale,implementation details,and experiences gained from these localized approaches,reduces localized emission sources,improve urban air quality and environmental management efficiency.展开更多
Background:There are substantial regional differences in drinking alcohol in Russia,both at the population and individual levels.However,the causes of these differences have not been studied yet.Objective:The goal of ...Background:There are substantial regional differences in drinking alcohol in Russia,both at the population and individual levels.However,the causes of these differences have not been studied yet.Objective:The goal of our study was to examine the effect of regional living conditions on individual alcohol consumption by the population of Russia.Methods:For the analysis,we used data from a cross-sectional epidemiological study conducted in 2013-2014.The final analytical sample included 18,130 people aged 25-64 years.We conducted the interviews face to face,based on which any drinking in the last year,as well as alcohol abuse,were considered as a response.Alcohol abuse was recorded when the respondent consumed 5.75 or more grams of pure ethanol per day(75th percentile of average daily alcohol consumption among alcohol drinkers).The assessment of the regional living conditions was accomplished via integral indexing,which was previously performed based on publicly available data for 2010-2014.Associations were assessed using generalized scoring equations with unchanging standard errors.The associations were expressed by odds ratios(OR)and 95%confidence intervals(C).Results:Deterioration of social conditions and increase in demographic depression in the region of residence increased the odds of any drinking(OR 1.51,95%CI:1.33 to 1.72,P<0.001 and OR 1.22,95%CI:1.05 to 1.41,P=0.oo9,respectively).The odds of alcohol abuse increased with the deterioration of social living conditions and the growth of the industrial development in the region:OR 1.35,95%CI:1.14 to 1.59,P<0.001 and OR 1.16,95%CI:1.05 to 1.28,P=0.002,respectively.Conclusion:Our analysis allowed assessing the impact of the regional living conditions on individual drinking alcohol in the population of Russia.展开更多
Objective: Fetal Alcohol Spectrum Disorders (FASDs) are common, often undiagnosed, lifelong developmental disorders that result from prenatal alcohol exposure. FASD is present at birth and typically identified around ...Objective: Fetal Alcohol Spectrum Disorders (FASDs) are common, often undiagnosed, lifelong developmental disorders that result from prenatal alcohol exposure. FASD is present at birth and typically identified around seven years of age. The most severe outcome in cases of FASD is mortality. The purpose of this scoping review is to 1) use a systematic review to provide an estimated mortality proportion for children with FASD, and 2) update a study published in 2014 by reviewing published reports of mortality in individuals diagnosed with FASD. Method: A search of PubMed, CINAHL, and Google Scholar for reports published between 2013 and 2023 on mortality in individuals with FASD. Results: Three population-based studies have reported on all-cause mortality rates, finding a combined mortality rate of 10.9%, a 2.63 fold (95% CI: 2.61 to 2.65) increase in mortality risk over the general population. Since 2016, this review identified only eight new cases meeting the study inclusion criteria. The reported causes of death were five cases of pneumonia, and one case each of failure to thrive and dehydration, intestinal dilatation and asphyxiation caused by overeating due to pica, and acute gastric volvulus. Discussion: While current research suggests a diagnosis of FASD is associated with a 2.6-fold increase in mortality risk, this is likely an underestimation, as most cases of FASD-related mortality go unreported. Globally, about 1 new case is reported every 15 months. However, in the United States alone, between 1752 to 4400 FASD related deaths occur annually. Our review suggests that FASD is rarely identified as a causal or contributing factor in deaths of children and adolescents, resulting in a substantial undercount of FASD-related deaths. Increased attention to the role of FASD in infant and child mortality case reviews, child death review committee reports, and mortality reviews is needed.展开更多
Background:Alcohol and illicit drugs(AID)continue to be a major global health concern.Although preventable,AID is linked to millions of deaths annually worldwide.The situation is particularly grave for young people,wi...Background:Alcohol and illicit drugs(AID)continue to be a major global health concern.Although preventable,AID is linked to millions of deaths annually worldwide.The situation is particularly grave for young people,with AID being a major direct risk factor for disability-adjusted youth life-years lost and death.It further contributes to assaults,road crashes,accidental poisoning,and suicide,leading to long-term issues and public health concerns.Objective:This study aimed at disclosing current AID prevalence data for Argentinian,Bulgarian,Chilean and Romanian youth.It shed light on the predictors of AID in young people from those countries.Method:The study used an online survey to gather data from people aged 18 to 25(n=1,297).The survey was underpinned by the theory of planned behaviour(TPB).Predictors were investigated separately for drinking alcohol and using illicit drugs.Results:Our data revealed that across the four target countries,49%to 90%of the participants drank alcohol,and 8%to 35%used illicit drugs in the past three months.Between 20%and 91%of them intended to drink,and between 8%and 31%intended to use illicit drugs in the following three months.Our TPB model predicted statistically significant(P<0.001)amounts of variance in drinking alcohol(between 61%and 72%)and using illicit drugs(between 20.3%and 74.4%).Intention was consistent in significantly predicting both behaviours.Evidence around the predictive validity of self-efficacy,age and gender was mixed across the investigated countries.Conclusion:This research provided an update on the scarce AID epidemiological data.It also supplied evidence about what theoretically-informed measures might be useful targets of interventions in the case of Argentina,Bulgaria,Chile and Romania.This new knowledge of understanding substance abuse determinants and prevalence may help researchers and practitioners better meet young people's health prevention needs.展开更多
Background: Fetal Alcohol Spectrum Disorders (FASDs) are a global public health concern with lifelong consequences for affected individuals. Recent prevalence studies suggest FASD prevalence rates range from 1-5% amon...Background: Fetal Alcohol Spectrum Disorders (FASDs) are a global public health concern with lifelong consequences for affected individuals. Recent prevalence studies suggest FASD prevalence rates range from 1-5% among school age children. Most people with FASD are not correctly diagnosed and inadequate screening to identify patients with increased risk may contribute to under-diagnosis. This study developed a 10-item screening tool for FASD and examined its feasibility. Methods: The sample consisted of 355 children who had been evaluated at an FASD clinic. Data from the 33-item Alcohol Related Neurodevelopmental Disorder Behavioral Checklist was used to develop a brief FASD screen by comparing the changes in Cronbach’s alpha for different combinations of items. The validity of the brief scale was then further examined using receiving operating characteristic analyses. Results: The 10-item screen demonstrated acceptable sensitivity, specificity, and accuracy to identify children at high risk for FASD. The percentage correctly classified was 91.3 and the area under the receiving operating characteristic curve was 0.971. Conclusions: This feasibility study demonstrated that a screen for FASD consisting of 10 items with yes or no responses can be completed in 3 - 4 minutes. The tool is brief, with a low administration burden and has acceptable epidemiologic performance characteristics including accuracy. Future research should examine the performance of this tool when used in larger, community-based populations where screening for FASD would be appropriate.展开更多
Background: Neurodevelopmental abnormalities in fetal alcohol spectrum disorder (FASD) are linked to brain insulin resistance and oxidative stress. However, the role of thiamine deficiency as a distinct or additive fa...Background: Neurodevelopmental abnormalities in fetal alcohol spectrum disorder (FASD) are linked to brain insulin resistance and oxidative stress. However, the role of thiamine deficiency as a distinct or additive factor in the pathogenesis of the neurodevelopmental and metabolic derangements in FASD has not been determined. Methods: Control and ethanol-exposed human PNET2 cerebellar neuronal cells and rat cerebellar slice cultures were treated with vehicle or pyrithiamine (Pyr) to assess independent and additive effects of thiamine deficiency on ethanol-mediated neurotoxicity, mitochondrial dysfunction, insulin resistance, inhibition of neuronal and glial genes, and oxidative stress. Results: Pyr treatments (0 - 200 µM) caused dose-dependent cell loss (Crystal Violet assay) and reduced mitochondrial function (MTT assay) in PNET2 neuronal cultures. Ethanol alone (100 mM) significantly reduced PNET2 neuronal viability, MTT activity, and ATP production. Over the broad dose range of Pyr treatment, ethanol significantly reduced ATP content and cell number and increased mitochondrial mass (MitoTracker Green). Ex vivo cerebellar slice culture studies revealed ethanol-induced developmental architectural disruption that was substantially worsened by Pyr. The adverse effects of ethanol were linked to increased lipid peroxidation and inhibition of asparatyl-asparaginyl-β-hydroxylase (ASPH) expression. The independent and additive effects of Pyr were associated with increased cytotoxicity, lipid peroxidation, Caspase 3 activation, and Tau accumulation. Conclusions: During development, alcohol exposure and thiamine deficiency exert distinct but overlapping molecular pathologies that ultimately impair the structure and function of cerebellar neurons. While both insults drive cell loss and mitochondrial dysfunction with increased lipid peroxidation, ethanol’s additional inhibitory effects on ASPH reflect impairments in insulin and IGF signaling. In contrast, Pyr’s main adverse effects were likely due to neurotoxicity and the activation of apoptosis cascades. The findings suggest that FASD severity may be reduced by thiamine supplementation, but without additional support for insulin/IGF signaling networks, FASD would not be prevented.展开更多
基金The current project is funded by Shandong Provincial Natural Science Foundation,China(ZR2020MH370)Major Science and Technology Innovation in Shandong Province(2017CXGC1307)Ji’nan Science and Technology Project(201303055)。
文摘Coprinus comatus polysaccharide(CCP)has significant hepatoprotective effect.To explore hepatoprotective mechanism of CCP,the study analyzed preventive effect of CCP on acute alcoholic liver injury in mice by histopathological examination and biochemical analysis.Simultaneously,hepatoprotective mechanism was also analyzed in conjunction with metabolomics and proliferation of gut microbiota.The results showed that CCP significantly decreased alanine aminotransferase(ALT),aspartate aminotransferase(AST)and triglyceride(TG)levels in serum of alcoholic liver disease(ALD)mice.Histopathological examination showed that CCP can significantly improve liver damage.Metabolomics results showed that there were significant differences in the level of metabolites in liver tissue of control group,ALD group and CCP group,including taurine,xanthosine,fumaric acid and arachidonic acid,among others.Metabolites pathways analysis showed that hepatoprotective effect of CCP was related to energy metabolism,biosynthesis of unsaturated fatty acids,amino acids metabolism and lipid metabolism.Additionally,CCP inhibited an increase in the number of Clostridium perfringens,Enterobacteriaceae and Enterococcus,and a decrease in the number of Lactobacillus and Bifidobacterium in the gut of ALD mice.All these findings suggested that CCP treatment reversed the phenotype of ethanol-induced liver injury and the associated metabolites pathways.
基金supported by the National Natural Science Foundation of China(32271413 and 32271408)the National Basic Research Program of China(2021YFA1201404)+2 种基金the Natural Science Foundation of Jiangsu Province(BK20232023)the Science Program of Jiangsu Province Administration for Market Regulation(KJ2024010)the Jiangsu Provincial Key Medical Center Foundation,and the Jiangsu Provincial Medical Outstanding Talent Foundation.
文摘Hydrogel-based tissue-engineered skin has attracted increased attention due to its potential to restore the structural integrity and functionality of skin.However,the mechanical properties of hydrogel scaffolds and natural skin are substantially different.Here,we developed a polyvinyl alcohol(PVA)/acrylamide based interpenetrating network(IPN)hydrogel that was surface modified with polydopamine(PDA)and termed Dopa-gel.The Dopa-gel exhibited mechanical properties similar to native skin tissue and a superior ability to modulate paracrine functions.Furthermore,a tough scaffold with tensile resistance was fabricated using this hydrogel by three-dimensional printing.The results showed that the interpenetration of PVA,alginate,and polyacrylamide networks notably enhanced the mechanical properties of the hydrogel.Surface modification with PDA endowed the hydrogels with increased secretion of immunomodulatory and proangiogenic factors.In an in vivo model,Dopa-gel treatment accelerated wound closure,increased vascularization,and promoted a shift in macrophages from a proinflammatory M1 phenotype to a prohealing and anti-inflammatory M2 phenotype within the wound area.Mechanistically,the focal adhesion kinase(FAK)/extracellular signal-related kinase(ERK)signaling pathway may mediate the promotion of skin defect healing by increasing paracrine secretion via the Dopa-gel.Additionally,proangiogenic factors can be induced through Rho-associated kinase-2(ROCK-2)/vascular endothelial growth factor(VEGF)-mediated paracrine secretion under tensile stress conditions.Taken together,these findings suggest that the multifunctional Dopa-gel,which has good mechanical properties similar to those of native skin tissue and enhanced immunomodulatory and angiogenic properties,is a promising scaffold for skin tissue regeneration.
文摘The fruit of Morinda citrifolia L., commonly known as noni, has an extensive history of use as a food and traditional medicine around the world. Adding value to Morinda citrifolia L. products, particularly the fruit, could be one way of building resilience in vulnerable farming households. The aim of this study was to determine the secondary metabolite and mineral composition of noni juice obtained by fermenting the fruit of Morinda citrifolia L. Fruits were collected in August 2022 from the local field in Thiès region, West of Senegal. Extraction yields were determined and the secondary metabolites were determined using conventional analytical methods. Calcium, magnesium, iron, sodium and potassium were determined by atomic absorption spectrophotometer coupled with a CCD detector. The results show that an average fruit mass (503.2 ± 110.96 g) consists of 171.44 ± 50.01 g pulp and 34.06 ± 10.35 g seeds. The traditional extraction yield of noni juice is 16.46% after three weeks of fermentation. The contents of total polyphenols, flavonoids and tannins obtained in noni are 608.97 ± 4.53 mg EAG/100mL, 7.78 ± 0.01 mg EQ/100mL and 0.191 ± 0.01 mg EC/100mL respectively. The ethanol content of noni varies from 3.57 to 5.23 mL/100mL during extraction. Noni has a high calcium content with a concentration of 383.79 ± 33.23 mg/L. This is followed by a good concentration of magnesium, potassium and sodium, at 278.47 ± 26.30, 187.43 ± 10.7 and 155.95 ± 28.66 mg/L respectively. Noni also has an iron content of 202.15 ± 0.05 mg/L.
基金the National Natural Science Foundation of China(project code:52202470)Jilin Province Natural Science Foundation(project codes:20220101205JC,20220101212JC)+2 种基金Jilin Province Specific Project of Industrial Technology Research&Development(project code:2020C025-2)2021 Interdisciplinary Integration and Innovation Project of Jilin University(project code:XJRCYB07)Free Exploration Project of Changsha Automotive Innovation Research Institute of Jilin University(project code:CAIRIZT20220202)。
文摘For the deep understanding on combustion of ammonia/diesel,this study develops a reduced mechanism of ammonia/diesel with 227 species and 937 reactions.The sub-mechanism on ammonia/interactions of N-based and C-based species(N—C)/NOx is optimized using the Non-dominated Sorting Genetic Algorithm II(NSGA-II)with 200 generations.The optimized mechanism(named as 937b)is validated against combustion characteristics of ammonia/methane(which is used to examine the accuracy of N—C interactions)and ammonia/diesel blends.The ignition delay times(IDTs),the laminar flame speeds and most of key intermediate species during the combustion of ammonia/methane blends can be accurately simulated by 937b under a wide range of conditions.As for ammonia/diesel blends with various diesel energy fractions,reasonable predictions on the IDTs under pressures from 1.0 MPa to5.0 MPa as well as the laminar flame speeds are also achieved by 937b.In particular,with regard to the IDT simulations of ammonia/diesel blends,937b makes progress in both aspects of overall accuracy and computational efficiency,compared to a detailed ammonia/diesel mechanism.Further kinetic analysis reveals that the reaction pathway of ammonia during the combustion of ammonia/diesel blend mainly differs in the tendencies of oxygen additions to NH_2 and NH with different equivalence ratios.
文摘Objective: Utilizing Mendelian Randomization, this study employs Single Nucleotide Polymorphisms (SNPs) as instrumental variables to explore the causal relationships between bibulosity, smoking, and Primary Open Angle Glaucoma (POAG). Methods: GWAS data for bibulosity, smoking, and POAG were obtained from the Social Science Genetic Association Consortium website and the IEU OpenGWAS Project website, respectively. Using a P-value threshold of −8, a linkage disequilibrium coefficient (r2) of 0.001, and a linkage disequilibrium region width of 10,000 kb, the data were aggregated, resulting in 6 SNPs for bibulosity and 253 SNPs for smoking. Three regression models, MR-Egger, Weighted Median Estimator (WME), and Random-Effects Inverse-Variance Weighted (IVW) were applied to analyze the causal impact of bibulosity and smoking on POAG. Results: The GWAS data for alcohol consumption and smoking were derived from European populations, while the GWAS data for Primary Open-Angle Glaucoma (POAG) were sourced from East Asian populations, with no gender restrictions. Analysis using three different regression models revealed that neither excessive alcohol consumption nor smoking significantly increased the risk of developing POAG. Specifically, the odds ratios with 95% confidence intervals for the alcohol consumption group were 0.854 (0.597 - 1.221) in MR-Egger regression, 0.922 (0.691 - 1.231) in WME regression, and 0.944 (0.711 - 1.252) in IVW regression. For the smoking group, the odds ratios were 1.146 (0.546 - 2.406) in MR-Egger regression, 0.850 (0.653 - 1.111) in WME regression, and 0.939 (0.780 - 1.131) in IVW regression. Given the significant heterogeneity in the SNPs associated with smoking, the focus was primarily on the results from the IVW regression model. Conclusion: Alcohol consumption and smoking are not significant risk factors for the development of POAG.
基金supported by the National Natural Science Foundation of China(No.81960074)the Natural Science Foundation-Outstanding Youth Fund Project of Jiangxi Province(No.20232ACB216006)。
文摘BACKGROUND Oxidative stress is closely associated with hypertensive outcomes.The oxidative balance score(OBS)measures oxidative stress exposure from dietary and lifestyle elements.The objective of this study was to investigate the association between OBS and mortality in hypertensive patients.METHODS This study included 7823 hypertensive patients from the National Health and Nutrition Examination Survey(NHA-NES)1999-2014.Several models,including Cox regression,restricted cubic splines(RCS),Kaplan-Meier survival analysis,subgroup,and sensitivity analyses,were exploited to investigate the relationship between OBS and the risk of mortality.RESULTS Controlling for all potential confounders,a significantly inverse association was observed between elevated OBS and all-cause[hazard ratio(HR)=0.90,95%CI:0.85-0.95]and cardiovascular mortality(HR=0.85,95%CI:0.75-0.95).With adjustment for covariates,significant associations between lifestyle OBS and mortality risks diminished,whereas associations between dietary OBS and these mortality risks remained robust(all-cause mortality:HR=0.91,95%CI:0.86-0.96;cardiovascular mortality:HR=0.85,95%CI:0.76-0.96).RCS demonstrated a linear relationship between OBS and all-cause and cardiovascular mortality risk(P_(nonlinear)=0.088 and P_(nonlinear)=0.447,respectively).Kaplan-Meier curves demonstrated that the mortality rate was lower with a high OBS(P<0.001).The consistency of the association was demonstrated in subgroup and sensitivity analyses.RCS after stratification showed that among current drinkers,those with higher OBS had a lower risk of mortality compared with former or never drinkers.CONCLUSIONS In hypertensive individuals,there was a negative association between OBS and all-cause and cardiovascular mortality.Encouraging hypertensive individuals,especially those currently drinking,to maintain high levels of OBS may be beneficial in improving their prognosis.
文摘The millimeter-scale capsules with controllable morphology,ultra-low permeability and excellent mechanical stability were fabricated by millifluidics.Viscosity of inner phase was adjusted to control the morphology and properties of the capsules.In detail,as the concentration of polyvinyl alcohol(PVA)increased from 0 to 8% in the inner phase of the capsules,the diameter of capsules decreased from 3.33 ± 0.01mm to 2.97 ± 0.01 mm,the shell thickness of capsules decreased from 0.183 ± 0.004 mm to 0.155 ± 0.003 mm.While the capsules had round shape and high sphericity.Notably,the capsules with 2% PVA in the inner phase had remarkably decreased water permeability and good morphological stability.Specifically,the end-time of water losing of the capsules was up to 49 days,while the dehydrated capsules maintained spherical appearance,and crushing force of the capsules was up to 13.73 ± 0.79 N,which ensured stability during processing and transportation.This research provides a new strategy for stable encapsulation of small molecules.
文摘Sea cucumber saponins have attracted more attention in recent years due to biological activities.It is a popular practice to soak sea cucumber in Baijiu at home and being applied to industrial manufacturing in China.However,knowledge of the effect of alcohol on the absorption and metabolism of sea cucumber saponins is limited.The effects of alcohol on digestion,absorption and metabolism of sea cucumber saponins in BALB/c mice were investigated after gavage and tail intravenous injection.The results showed that the content of saponins in serum and liver was significantly higher under the influence of alcohol than that in the control group after oral administration.Alcohol promoted the absorption of sea cucumber saponins prototype as well as inhibited the process of saponins being transformed into deglycositic metabolites in the small intestine.Moreover,sea cucumber saponins remained in circulation for a long time and alcohol slowed down the clearance of sea cucumber saponins under the influence of alcohol after intravenous injection.This confirmed the feasibility of marinating sea cucumber in Baijiu to improve the efficacy of saponins and provides an important theoretical basis for the utilization of sea cucumber and the development of sea cucumber liquor.
文摘A three-lumping Langmuir-Hinshelwood kinetic model was established based on the structures and reactivities of sulfur compounds.This model described the ultra-deep hydrodesulfurization(UDHDS)performance of diesel,reducing sulfur content from 10000μg/g to less than 10μg/g,with experimental and predicted data showing a discrepancy of less than 10%.The diesel UDHDS reaction was simulated by combining the mass transfer,reaction kinetics model,and physical properties of diesel.The results showed how the concentrations of H2S,hydrogen,and sulfur in the gas,liquid,and solid phases varied along the reactor length.Moreover,the study discussed the effects of each process parameter and impurity concentrations(H2S,basic nitrogen and,non-basic nitrogen)on diesel UDHDS.
文摘The transition from non-renewable to renewable energy sources is a significant challenge of our time. In the fuel industry, oxygenated additives such as butanol are transforming conventional fuels into renewable biofuels. This technology has been utilized in reciprocating engines for decades. This paper reviews the viability of using an n-butanol blend as a short-term replacement for diesel by analyzing its physical and chemical properties, combustion, performance, and emission characteristics in compression ignition (CI) engines under various conditions, including variable load, speed, acceleration, and both stationary and transient cycles. N-Butanol exhibits higher viscosity, better lubricity, higher heating value, improved blend stability, enhanced cold-flow properties, and higher density. These factors influence spray formation, injection timing, atomization, and combustion characteristics. Its higher oxygen content improves the diffusion combustion stage and efficiency. Adding 5% and 10% n-butanol to diesel increases pressure and apparent heat release rate, slightly reduces temperature, and improves thermal efficiency, with mixed effects on CO and THC emissions and a notable decrease in particulate matter emissions. Fuel consumption increases, while the impact on NOx emissions varies. A 10% butanol blend is considered optimal for enhancing performance and reducing particulate emissions without significantly affecting NOx emissions. Blending up to 40% butanol with diesel does not require engine modifications or ECU recalibrations in engines calibrated for pure diesel. Due to its advantageous properties and performance, n-butanol is recommended as a superior alcohol-diesel blend than ethanol for short-term diesel replacement.
基金supported by the Jeffrey Cheah School of Medicine and Health Sciences and the Library Resources,Monash University Malaysia
文摘This review delves into the detrimental impact of alcohol consumption on internal organs and reproductive health,elucidating the underlying mechanisms involving the Toll-like receptor 4(TLR4)/Nuclear factor kappa light chain enhancer of activated B cells(NF-kB)pathway and the Cytochrome P4502E1(CYP2E1)/reactive oxygen spe-cies(ROS)/nuclear factor erythroid 2-related factor 2(Nrf2)pathways.The TLR4/NF-kB pathway,crucial for inflammatory and immune responses,triggers the production of pro-inflammatory agents and type-1 interferon,disrupting the balance between inflammatory and antioxidant responses when tissues are chronically exposed to al-cohol.Alcohol-induced dysbiosis in gut microbes heightens gut wall permeability to pathogen-associated molecular patterns(PAMPs),leading to liver cell infection and subsequent inflammation.Concurrently,CYP2E1-mediated alcohol metabolism gen-erates ROS,causing oxidative stress and damaging cells,lipids,proteins,and deoxy-ribonucleic acid(DNA).To counteract this inflammatory imbalance,Nrf2 regulates gene expression,inhibiting inflammatory progression and promoting antioxidant re-sponses.Excessive alcohol intake results in elevated liver enzymes(ADH,CYP2E1,and catalase),ROS,NADH,acetaldehyde,and acetate,leading to damage in vital organs such as the heart,brain,and lungs.Moreover,alcohol negatively affects reproduc-tive health by inhibiting the hypothalamic-pituitary-gonadal axis,causing infertility in both men and women.These findings underscore the profound health concerns associated with alcohol-induced damage,emphasizing the need for public awareness regarding the intricate interplay between immune responses and the multi-organ im-pacts of alcohol consumption.
基金the SINOPEC(124015)and the State Key Laboratory of Engines at Tianjin University(No.K2022-06).
文摘The aim of this study was to investigate the oxidation reactivity and behavior of exhaust particulate matter(PM)from diesel engines.PM samples from two diesel engines(1K,CY4102)with different emission levels were collected by a thermophoretic system and a quartz filter.The oxidation reactivity,oxidation behaviors,and physicochemical properties of the PM samples were analyzed using thermogravimetric analysis(TGA),high-resolution transmission electron microscopy(HRTEM),Fourier-transform infrared spectrometry(FTIR),and Raman spectroscopy.The results showed that there was a great difference in the oxidation reactivity of soot particles emitted by the two different diesel engines.A qualitative analysis of the factors influencing oxidation reactivity showed that the nanostructure,degree of graphitization,and relative concentration of aliphatic C—H functional groups were the most important factors,whereas no significant correlation was found between the primary particle size and activation energy of the diesel soot.Based on the oxidation behavior analysis,the diesel soot particles exhibited both internal and surface oxidation modes during the oxidation process.Surface oxidation was dominant during the initial stage,and as oxidation progressed,the mode gradually changed to internal oxidation.Internal oxidation mode of soot particles from the 1K engine was significantly higher than that of CY4102.
基金funded by the National Natural Science Foundation of China under Grant No.51505275.
文摘The Miller cycle is a program that effectively reduces NOx emissions from marine diesel engines by lowering the maximum combustion temperature in the cylinder,thereby reducing NOx emissions.To effectively investigate the impact of Miller cycle optimum combustion performance and emission capability under high load conditions,this study will perform a one-dimensional simulation of the performance of a marine diesel engine,as well as a threedimensional simulation of the combustion in the cylinder.A 6-cylinder four-stroke single-stage supercharged diesel engine is taken as the research object.The chassis dynamometer and other related equipment are used to build the test system,carry out the diesel engine bench test,and collect experimental data.The simulation results are compared with the test results,and the error is less than 5%.In this study,the authors will use simulation software to simulate several Miller cycle scenarios designed for early inlet valve closure and analyze the impact of the Miller cycle on combustion and emissions at 100%load conditions.By comparing the flow field distribution of the engine at 1500 r/min condition,it was found that proper EIVC can prolong the ignition latency period and homogeneous fuel-air mixture combustion acceleration,but it can reduce pressure and temperature within the piston chamber and NOx emission.However,the Miller cycle reduces end-of-compression temperatures,which increases combustion duration and exhaust temperatures,making it difficult to improve fuel economy at the optimum fuel consumption point,and closing the intake valves prematurely leads to excessive fuel expenditure.Furthermore,temperature and heat release rate within the piston chamber,NOx,and SOOT generation were significantly enhanced.
基金supported by the National Natural Science Foundation of China(22078211)the China Postdoctoral Science Foundation(2022M721115).
文摘The interactions between lignin oligomers and solvents determine the behaviors of lignin oligomers self-assembling into uniform lignin nanoparticles(LNPs).Herein,several alcohol solvents,which readily interact with the lignin oligomers,were adopted to study their effects during solvent shifting process for LNPs’production.The lignin oligomers with widely distributed molecular weight and abundant guaiacyl units were extracted from wood waste(mainly consists of pine wood),exerting outstanding self-assembly capability.Uniform and spherical LNPs were generated in H_(2)O-n-propanol cosolvent,whereas irregular LNPs were obtained in H_(2)O-methanol cosolvent.The unsatisfactory self-assembly performance of the lignin oligomers in H_(2)O-methanol cosolvent could be attributed to two aspects.On one hand,for the initial dissolution state,the distinguishing Hansen solubility parameter and polarity between methanol solvent and lignin oligomers resulted in the poor dispersion of the lignin oligomers.On the other hand,strong hydrogen bonds between methanol solvent and lignin oligomers during solvent shifting process,hindered the interactions among the lignin oligomers for self-assembly.
基金Research Grants Council of the Hong Kong Special Administrative Region,China(U15239024)。
文摘This paper examines project⁃based policies and regulations implemented globally to control and mitigate emissions from diesel⁃powered construction equipment.This study systematically reviews and analyzes various managerial,regulatory,and technical measures adopted across countries and regions,mostly of advanced economy.Key strategies of control include setting emission thresholds,idling restrictions,perform remote online monitoring,operational time limits,setting low emission zones,and enforced registration systems.The review highlights the rationale,implementation details,and experiences gained from these localized approaches,reduces localized emission sources,improve urban air quality and environmental management efficiency.
基金supported by National Medical Research Center for Therapy and Preventive Medicine(Moscow,Russia).
文摘Background:There are substantial regional differences in drinking alcohol in Russia,both at the population and individual levels.However,the causes of these differences have not been studied yet.Objective:The goal of our study was to examine the effect of regional living conditions on individual alcohol consumption by the population of Russia.Methods:For the analysis,we used data from a cross-sectional epidemiological study conducted in 2013-2014.The final analytical sample included 18,130 people aged 25-64 years.We conducted the interviews face to face,based on which any drinking in the last year,as well as alcohol abuse,were considered as a response.Alcohol abuse was recorded when the respondent consumed 5.75 or more grams of pure ethanol per day(75th percentile of average daily alcohol consumption among alcohol drinkers).The assessment of the regional living conditions was accomplished via integral indexing,which was previously performed based on publicly available data for 2010-2014.Associations were assessed using generalized scoring equations with unchanging standard errors.The associations were expressed by odds ratios(OR)and 95%confidence intervals(C).Results:Deterioration of social conditions and increase in demographic depression in the region of residence increased the odds of any drinking(OR 1.51,95%CI:1.33 to 1.72,P<0.001 and OR 1.22,95%CI:1.05 to 1.41,P=0.oo9,respectively).The odds of alcohol abuse increased with the deterioration of social living conditions and the growth of the industrial development in the region:OR 1.35,95%CI:1.14 to 1.59,P<0.001 and OR 1.16,95%CI:1.05 to 1.28,P=0.002,respectively.Conclusion:Our analysis allowed assessing the impact of the regional living conditions on individual drinking alcohol in the population of Russia.
文摘Objective: Fetal Alcohol Spectrum Disorders (FASDs) are common, often undiagnosed, lifelong developmental disorders that result from prenatal alcohol exposure. FASD is present at birth and typically identified around seven years of age. The most severe outcome in cases of FASD is mortality. The purpose of this scoping review is to 1) use a systematic review to provide an estimated mortality proportion for children with FASD, and 2) update a study published in 2014 by reviewing published reports of mortality in individuals diagnosed with FASD. Method: A search of PubMed, CINAHL, and Google Scholar for reports published between 2013 and 2023 on mortality in individuals with FASD. Results: Three population-based studies have reported on all-cause mortality rates, finding a combined mortality rate of 10.9%, a 2.63 fold (95% CI: 2.61 to 2.65) increase in mortality risk over the general population. Since 2016, this review identified only eight new cases meeting the study inclusion criteria. The reported causes of death were five cases of pneumonia, and one case each of failure to thrive and dehydration, intestinal dilatation and asphyxiation caused by overeating due to pica, and acute gastric volvulus. Discussion: While current research suggests a diagnosis of FASD is associated with a 2.6-fold increase in mortality risk, this is likely an underestimation, as most cases of FASD-related mortality go unreported. Globally, about 1 new case is reported every 15 months. However, in the United States alone, between 1752 to 4400 FASD related deaths occur annually. Our review suggests that FASD is rarely identified as a causal or contributing factor in deaths of children and adolescents, resulting in a substantial undercount of FASD-related deaths. Increased attention to the role of FASD in infant and child mortality case reviews, child death review committee reports, and mortality reviews is needed.
文摘Background:Alcohol and illicit drugs(AID)continue to be a major global health concern.Although preventable,AID is linked to millions of deaths annually worldwide.The situation is particularly grave for young people,with AID being a major direct risk factor for disability-adjusted youth life-years lost and death.It further contributes to assaults,road crashes,accidental poisoning,and suicide,leading to long-term issues and public health concerns.Objective:This study aimed at disclosing current AID prevalence data for Argentinian,Bulgarian,Chilean and Romanian youth.It shed light on the predictors of AID in young people from those countries.Method:The study used an online survey to gather data from people aged 18 to 25(n=1,297).The survey was underpinned by the theory of planned behaviour(TPB).Predictors were investigated separately for drinking alcohol and using illicit drugs.Results:Our data revealed that across the four target countries,49%to 90%of the participants drank alcohol,and 8%to 35%used illicit drugs in the past three months.Between 20%and 91%of them intended to drink,and between 8%and 31%intended to use illicit drugs in the following three months.Our TPB model predicted statistically significant(P<0.001)amounts of variance in drinking alcohol(between 61%and 72%)and using illicit drugs(between 20.3%and 74.4%).Intention was consistent in significantly predicting both behaviours.Evidence around the predictive validity of self-efficacy,age and gender was mixed across the investigated countries.Conclusion:This research provided an update on the scarce AID epidemiological data.It also supplied evidence about what theoretically-informed measures might be useful targets of interventions in the case of Argentina,Bulgaria,Chile and Romania.This new knowledge of understanding substance abuse determinants and prevalence may help researchers and practitioners better meet young people's health prevention needs.
文摘Background: Fetal Alcohol Spectrum Disorders (FASDs) are a global public health concern with lifelong consequences for affected individuals. Recent prevalence studies suggest FASD prevalence rates range from 1-5% among school age children. Most people with FASD are not correctly diagnosed and inadequate screening to identify patients with increased risk may contribute to under-diagnosis. This study developed a 10-item screening tool for FASD and examined its feasibility. Methods: The sample consisted of 355 children who had been evaluated at an FASD clinic. Data from the 33-item Alcohol Related Neurodevelopmental Disorder Behavioral Checklist was used to develop a brief FASD screen by comparing the changes in Cronbach’s alpha for different combinations of items. The validity of the brief scale was then further examined using receiving operating characteristic analyses. Results: The 10-item screen demonstrated acceptable sensitivity, specificity, and accuracy to identify children at high risk for FASD. The percentage correctly classified was 91.3 and the area under the receiving operating characteristic curve was 0.971. Conclusions: This feasibility study demonstrated that a screen for FASD consisting of 10 items with yes or no responses can be completed in 3 - 4 minutes. The tool is brief, with a low administration burden and has acceptable epidemiologic performance characteristics including accuracy. Future research should examine the performance of this tool when used in larger, community-based populations where screening for FASD would be appropriate.
文摘Background: Neurodevelopmental abnormalities in fetal alcohol spectrum disorder (FASD) are linked to brain insulin resistance and oxidative stress. However, the role of thiamine deficiency as a distinct or additive factor in the pathogenesis of the neurodevelopmental and metabolic derangements in FASD has not been determined. Methods: Control and ethanol-exposed human PNET2 cerebellar neuronal cells and rat cerebellar slice cultures were treated with vehicle or pyrithiamine (Pyr) to assess independent and additive effects of thiamine deficiency on ethanol-mediated neurotoxicity, mitochondrial dysfunction, insulin resistance, inhibition of neuronal and glial genes, and oxidative stress. Results: Pyr treatments (0 - 200 µM) caused dose-dependent cell loss (Crystal Violet assay) and reduced mitochondrial function (MTT assay) in PNET2 neuronal cultures. Ethanol alone (100 mM) significantly reduced PNET2 neuronal viability, MTT activity, and ATP production. Over the broad dose range of Pyr treatment, ethanol significantly reduced ATP content and cell number and increased mitochondrial mass (MitoTracker Green). Ex vivo cerebellar slice culture studies revealed ethanol-induced developmental architectural disruption that was substantially worsened by Pyr. The adverse effects of ethanol were linked to increased lipid peroxidation and inhibition of asparatyl-asparaginyl-β-hydroxylase (ASPH) expression. The independent and additive effects of Pyr were associated with increased cytotoxicity, lipid peroxidation, Caspase 3 activation, and Tau accumulation. Conclusions: During development, alcohol exposure and thiamine deficiency exert distinct but overlapping molecular pathologies that ultimately impair the structure and function of cerebellar neurons. While both insults drive cell loss and mitochondrial dysfunction with increased lipid peroxidation, ethanol’s additional inhibitory effects on ASPH reflect impairments in insulin and IGF signaling. In contrast, Pyr’s main adverse effects were likely due to neurotoxicity and the activation of apoptosis cascades. The findings suggest that FASD severity may be reduced by thiamine supplementation, but without additional support for insulin/IGF signaling networks, FASD would not be prevented.