A gram negative bacterium,named JDC-16,which can grow well on the substrate of phthalic acid esters(PAEs) as the sole source of carbon and energy,was isolated from river sludge.Based on the morphology,physiological an...A gram negative bacterium,named JDC-16,which can grow well on the substrate of phthalic acid esters(PAEs) as the sole source of carbon and energy,was isolated from river sludge.Based on the morphology,physiological and biochemical properties and analysis of 16S rRNA gene sequence,it was preliminarily identified belonging to the genus Acinetobacter.The result of substrates utilization range indicates that strain JDC-16 can utilize a variety of phthalates except for diisononyl phthalate(DINP) .The degradation tests using diethyl phthalate(DEP) as the model compound show that the optimal pH and temperature for DEP degradation by Acinetobacter sp.JDC-16 is 8.0 and 35℃,respectively.Meanwhile,degradation kinetics under various initial concentrations of DEP reveals that substrate depletion curves fit well with the modified Gompertz model with high correlation coefficient(R 2 >0.99) .Furthermore,the substrate induction test indicates that DEP-induction can apparently shorten the lag phase and enhance the degradation rate.This work highlights the potential of this isolate for bioremediation of phthalates-contaminated environments.展开更多
This paper presents experimental observations on the adsorption of individual solutes by a simple thermodynamic framework, and the equilibrium adsorption of ethyl benzoate and diethyl phthalate on phenolic resin adsor...This paper presents experimental observations on the adsorption of individual solutes by a simple thermodynamic framework, and the equilibrium adsorption of ethyl benzoate and diethyl phthalate on phenolic resin adsorbent in hexane solutions within the temperature range of 293-313 K. The experimental results show that the Freundlich adsorption law is applicable to the adsorption of ethyl benzoate and diethyl phthalate on the adsorbent, since all the correlative factors R' are larger than 0.99. The negative values of all the isosteric adsorption enthalpies for ethyl benzoate and diethyl phthalate indicate that they undergo exothermic processes, while their magnitudes (19-28 kJ/mol) manifest a hydrogen bonding sorption process. Other thermodynamic properties: the free energy changes and the entropy change associated with the adsorption have been calculated from the Gibbs adsorption equation and the Gibbs-Helmholtz equation展开更多
This paper studies the adsorption of diethyl phthalate (DEP,an environmental hormone) on the surface of nanoscale TiO2, effects of pH value of solutions, initial concentrations of DEP and additive surfactant on phot...This paper studies the adsorption of diethyl phthalate (DEP,an environmental hormone) on the surface of nanoscale TiO2, effects of pH value of solutions, initial concentrations of DEP and additive surfactant on photocatalytic degradation and dynamics of DEP. Under ultra violet illumination, the interaction between DEP and surfactants including DBS (sodium dodecylbenzenesulfonate), CTAB (cetyltrimethylammonium bromide), and OP-10 (nonylphenol polyoxyethylene ether) was exploited from the perspective of degradation speed calculated by the data of high pressure liquid chromatography (HPLC) and UV-Vis spectra, respectively. Photocatalytic degradation of DEP followed pseudo first-order reaction kinetics. DEP as substrate degraded fast when its initial concentration was 130 mg/L. TiO2 had certain adsorption ability of DEP. TiO2 could adsorb the most DEP at the approximately neutral pH of 6.91. Degradation of DEP was not affected obviously by additives OP-10 and DBS. Degradation rate of DEP was not enhanced greatly in the presence of surfactants, but degradation of DBS was sped up. Degradation rate of DEP was depressed in the presence of additive CTAB. The more CTAB was added, the less DEP was degraded. Degradation rate of CTAB became slow with the increase of initial CTAB concentration. The possible adsorption models among TiO2, DEP and surfactants were given.展开更多
This work studied the structural effects of hematite(α-Fe2 O3), 2-line ferrihydrite(HFO) and goethite(α-FeOOH) on diethyl phthalate ester(DEP) degradation. The results showed that the degradation of DEP was faster u...This work studied the structural effects of hematite(α-Fe2 O3), 2-line ferrihydrite(HFO) and goethite(α-FeOOH) on diethyl phthalate ester(DEP) degradation. The results showed that the degradation of DEP was faster under 365 nm light irradiation than in the dark in the presence of iron(hydr)oxides. The apparent kinetic rates of DEP degradation followed the order HFO > goethite ≈ hematite in the dark and HFO > hematite > goethite under 365 nm light irradiation. Two pathways governed H2 O2 decomposition efficiency on iron(hydr)oxide surfaces:(1) forming UOH on inherent surface hydroxyl groups(Fe-OH) and(2) producing O2 and H2 O on the surface oxygen vacancies. X-ray photoelectron spectroscopy(XPS) analyses indicated that HFO not only has high Fe-OH content but also has high Vo content, resulting in its low H2 O2 utilization efficiency(η). DEP was degraded through hydrogen abstraction and deesterification, and the major products were(OH)2-DEP, mono-ethyl phthalate(MEP), OH-MEP,and phthalate acid(PA). The study is important in understanding the transformation of phthalate esters in top surface soils and surface waters under ultraviolet light.展开更多
基金Project(30770388) supported by the National Natural Science Foundation of China
文摘A gram negative bacterium,named JDC-16,which can grow well on the substrate of phthalic acid esters(PAEs) as the sole source of carbon and energy,was isolated from river sludge.Based on the morphology,physiological and biochemical properties and analysis of 16S rRNA gene sequence,it was preliminarily identified belonging to the genus Acinetobacter.The result of substrates utilization range indicates that strain JDC-16 can utilize a variety of phthalates except for diisononyl phthalate(DINP) .The degradation tests using diethyl phthalate(DEP) as the model compound show that the optimal pH and temperature for DEP degradation by Acinetobacter sp.JDC-16 is 8.0 and 35℃,respectively.Meanwhile,degradation kinetics under various initial concentrations of DEP reveals that substrate depletion curves fit well with the modified Gompertz model with high correlation coefficient(R 2 >0.99) .Furthermore,the substrate induction test indicates that DEP-induction can apparently shorten the lag phase and enhance the degradation rate.This work highlights the potential of this isolate for bioremediation of phthalates-contaminated environments.
基金This project was supported by the National Natural Science Foundation of China (No. 29974015).
文摘This paper presents experimental observations on the adsorption of individual solutes by a simple thermodynamic framework, and the equilibrium adsorption of ethyl benzoate and diethyl phthalate on phenolic resin adsorbent in hexane solutions within the temperature range of 293-313 K. The experimental results show that the Freundlich adsorption law is applicable to the adsorption of ethyl benzoate and diethyl phthalate on the adsorbent, since all the correlative factors R' are larger than 0.99. The negative values of all the isosteric adsorption enthalpies for ethyl benzoate and diethyl phthalate indicate that they undergo exothermic processes, while their magnitudes (19-28 kJ/mol) manifest a hydrogen bonding sorption process. Other thermodynamic properties: the free energy changes and the entropy change associated with the adsorption have been calculated from the Gibbs adsorption equation and the Gibbs-Helmholtz equation
基金Supported by Tianjin Natural Science Foundation (No. 033604711) and Science and Technology Foundation of Construction Ministry (No. 03-2-064).
文摘This paper studies the adsorption of diethyl phthalate (DEP,an environmental hormone) on the surface of nanoscale TiO2, effects of pH value of solutions, initial concentrations of DEP and additive surfactant on photocatalytic degradation and dynamics of DEP. Under ultra violet illumination, the interaction between DEP and surfactants including DBS (sodium dodecylbenzenesulfonate), CTAB (cetyltrimethylammonium bromide), and OP-10 (nonylphenol polyoxyethylene ether) was exploited from the perspective of degradation speed calculated by the data of high pressure liquid chromatography (HPLC) and UV-Vis spectra, respectively. Photocatalytic degradation of DEP followed pseudo first-order reaction kinetics. DEP as substrate degraded fast when its initial concentration was 130 mg/L. TiO2 had certain adsorption ability of DEP. TiO2 could adsorb the most DEP at the approximately neutral pH of 6.91. Degradation of DEP was not affected obviously by additives OP-10 and DBS. Degradation rate of DEP was not enhanced greatly in the presence of surfactants, but degradation of DBS was sped up. Degradation rate of DEP was depressed in the presence of additive CTAB. The more CTAB was added, the less DEP was degraded. Degradation rate of CTAB became slow with the increase of initial CTAB concentration. The possible adsorption models among TiO2, DEP and surfactants were given.
基金funded by the National Natural Science Foundation of China (No. 41773125)the Research Instrument Development Program of Chinese Academy of Sciences (No. YZ201638)the 135 Research Program of the Chinese Academy of Sciences (No. ISSASIP1620)
文摘This work studied the structural effects of hematite(α-Fe2 O3), 2-line ferrihydrite(HFO) and goethite(α-FeOOH) on diethyl phthalate ester(DEP) degradation. The results showed that the degradation of DEP was faster under 365 nm light irradiation than in the dark in the presence of iron(hydr)oxides. The apparent kinetic rates of DEP degradation followed the order HFO > goethite ≈ hematite in the dark and HFO > hematite > goethite under 365 nm light irradiation. Two pathways governed H2 O2 decomposition efficiency on iron(hydr)oxide surfaces:(1) forming UOH on inherent surface hydroxyl groups(Fe-OH) and(2) producing O2 and H2 O on the surface oxygen vacancies. X-ray photoelectron spectroscopy(XPS) analyses indicated that HFO not only has high Fe-OH content but also has high Vo content, resulting in its low H2 O2 utilization efficiency(η). DEP was degraded through hydrogen abstraction and deesterification, and the major products were(OH)2-DEP, mono-ethyl phthalate(MEP), OH-MEP,and phthalate acid(PA). The study is important in understanding the transformation of phthalate esters in top surface soils and surface waters under ultraviolet light.
文摘用 HPLC 研究了促渗剂在不同条件下对左炔诺孕酮(1)透过离体小鼠皮肤的作用。如离体皮肤以促渗剂预处理4h,显示丙二醇、PVP-油酸对药物自饱和乙醇溶液透皮渗透有明显的促渗效果;油酸、月桂氮(艹卓)酮和邻苯二甲酸二乙酯呈负效应。药物饱和水溶液中的丙二醇等水溶性促渗剂对1经未预处理的皮肤的渗透,则几无促渗作用。骨架型 EVA 左炔诺孕酮膜中加入油酸,也具促渗作用,其它促渗剂的效果与预处理实验结果相似。