Digital image forgery (DIF) is a prevalent issue in the modern age, where malicious actors manipulate images for various purposes, including deception and misinformation. Detecting such forgeries is a critical task fo...Digital image forgery (DIF) is a prevalent issue in the modern age, where malicious actors manipulate images for various purposes, including deception and misinformation. Detecting such forgeries is a critical task for maintaining the integrity of digital content. This thesis explores the use of Modified Error Level Analysis (ELA) in combination with a Convolutional Neural Network (CNN), as well as, Feedforward Neural Network (FNN) model to detect digital image forgeries. Additionally, incorporation of Explainable Artificial Intelligence (XAI) to this research provided insights into the process of decision-making by the models. The study trains and tests the models on the CASIA2 dataset, emphasizing both authentic and forged images. The CNN model is trained and evaluated, and Explainable AI (SHapley Additive exPlanation— SHAP) is incorporated to explain the model’s predictions. Similarly, the FNN model is trained and evaluated, and XAI (SHAP) is incorporated to explain the model’s predictions. The results obtained from the analysis reveals that the proposed approach using CNN model is most effective in detecting image forgeries and provides valuable explanations for decision interpretability.展开更多
A network model is proposed to support service differentiation for mobile Ad Hoc networks by combining a fully distributed admission control approach and the DIFS based differentiation mechanism of IEEE802.11. It can ...A network model is proposed to support service differentiation for mobile Ad Hoc networks by combining a fully distributed admission control approach and the DIFS based differentiation mechanism of IEEE802.11. It can provide different kinds of QoS (Quality of Service) for various applications. Admission controllers determine a committed bandwidth based on the reserved bandwidth of flows and the source utilization of networks. Packets are marked when entering into networks by markers according to the committed rate. By the mark in the packet header, intermediate nodes handle the received packets in different manners to provide applications with the QoS corresponding to the pre-negotiated profile. Extensive simulation experiments showed that the proposed mechanism can provide QoS guarantee to assured service traffic and increase the channel utilization of networks.展开更多
No matter you agree or not,the world is in a fast developing time.The communication between people contributes to this de velopment.However,during these communications,people find out the culture difference between co...No matter you agree or not,the world is in a fast developing time.The communication between people contributes to this de velopment.However,during these communications,people find out the culture difference between countries and the realized the impor tance of develop awareness of cross culture differences.In my point of view,there are some reasons why it is important to develop aware ness of cross culture differences.展开更多
This article deals with a class of numerical methods for retarded differential algebraic systems with time-variable delay. The methods can be viewed as a combination of Runge-Kutta methods and Lagrange interpolation. ...This article deals with a class of numerical methods for retarded differential algebraic systems with time-variable delay. The methods can be viewed as a combination of Runge-Kutta methods and Lagrange interpolation. A new convergence concept, called DA-convergence, is introduced. The DA-convergence result for the methods is derived. At the end, a numerical example is given to verify the computational effectiveness and the theoretical result.展开更多
A new numerical technique named interval finite difference method is proposed for the steady-state temperature field prediction with uncertainties in both physical parameters and boundary conditions. Interval variable...A new numerical technique named interval finite difference method is proposed for the steady-state temperature field prediction with uncertainties in both physical parameters and boundary conditions. Interval variables are used to quantitatively describe the uncertain parameters with limited information. Based on different Taylor and Neumann series, two kinds of parameter perturbation methods are presented to approximately yield the ranges of the uncertain temperature field. By comparing the results with traditional Monte Carlo simulation, a numerical example is given to demonstrate the feasibility and effectiveness of the proposed method for solving steady-state heat conduction problem with uncertain-but-bounded parameters.展开更多
文摘Digital image forgery (DIF) is a prevalent issue in the modern age, where malicious actors manipulate images for various purposes, including deception and misinformation. Detecting such forgeries is a critical task for maintaining the integrity of digital content. This thesis explores the use of Modified Error Level Analysis (ELA) in combination with a Convolutional Neural Network (CNN), as well as, Feedforward Neural Network (FNN) model to detect digital image forgeries. Additionally, incorporation of Explainable Artificial Intelligence (XAI) to this research provided insights into the process of decision-making by the models. The study trains and tests the models on the CASIA2 dataset, emphasizing both authentic and forged images. The CNN model is trained and evaluated, and Explainable AI (SHapley Additive exPlanation— SHAP) is incorporated to explain the model’s predictions. Similarly, the FNN model is trained and evaluated, and XAI (SHAP) is incorporated to explain the model’s predictions. The results obtained from the analysis reveals that the proposed approach using CNN model is most effective in detecting image forgeries and provides valuable explanations for decision interpretability.
文摘A network model is proposed to support service differentiation for mobile Ad Hoc networks by combining a fully distributed admission control approach and the DIFS based differentiation mechanism of IEEE802.11. It can provide different kinds of QoS (Quality of Service) for various applications. Admission controllers determine a committed bandwidth based on the reserved bandwidth of flows and the source utilization of networks. Packets are marked when entering into networks by markers according to the committed rate. By the mark in the packet header, intermediate nodes handle the received packets in different manners to provide applications with the QoS corresponding to the pre-negotiated profile. Extensive simulation experiments showed that the proposed mechanism can provide QoS guarantee to assured service traffic and increase the channel utilization of networks.
文摘No matter you agree or not,the world is in a fast developing time.The communication between people contributes to this de velopment.However,during these communications,people find out the culture difference between countries and the realized the impor tance of develop awareness of cross culture differences.In my point of view,there are some reasons why it is important to develop aware ness of cross culture differences.
文摘This article deals with a class of numerical methods for retarded differential algebraic systems with time-variable delay. The methods can be viewed as a combination of Runge-Kutta methods and Lagrange interpolation. A new convergence concept, called DA-convergence, is introduced. The DA-convergence result for the methods is derived. At the end, a numerical example is given to verify the computational effectiveness and the theoretical result.
基金supported by the National Special Fund for Major Research Instrument Development(2011YQ140145)111 Project (B07009)+1 种基金the National Natural Science Foundation of China(11002013)Defense Industrial Technology Development Program(A2120110001 and B2120110011)
文摘A new numerical technique named interval finite difference method is proposed for the steady-state temperature field prediction with uncertainties in both physical parameters and boundary conditions. Interval variables are used to quantitatively describe the uncertain parameters with limited information. Based on different Taylor and Neumann series, two kinds of parameter perturbation methods are presented to approximately yield the ranges of the uncertain temperature field. By comparing the results with traditional Monte Carlo simulation, a numerical example is given to demonstrate the feasibility and effectiveness of the proposed method for solving steady-state heat conduction problem with uncertain-but-bounded parameters.