地心运动会影响地球参考框架原点的准确性,是地球参考框架进行非线性维持必须考虑的因素之一,因此提出对地心运动进行多尺度的建模和预测,以实现毫米级地球参考框架的建立和维持。采用网平移法计算的地心运动、全球地球物理流体中心(glo...地心运动会影响地球参考框架原点的准确性,是地球参考框架进行非线性维持必须考虑的因素之一,因此提出对地心运动进行多尺度的建模和预测,以实现毫米级地球参考框架的建立和维持。采用网平移法计算的地心运动、全球地球物理流体中心(global geophysical fluids center,GGFC)和国际GNSS服务(international gnss service,IGS)第三次重处理(IGSR03)提供的3组地心运动数据,首先对其一致性和差异进行了分析,然后分别利用谐波模型和Diff-LSTM模型对地心运动进行了长期和短期的建模与预测,结果显示,GGFC地心运动的预测精度优于1.5 mm,而Diff-LSTM模型的地心运动预测结果在短期内优于谐波模型,当预测步长为17时,GGFC和IGSR03的地心运动预测精度均能达到甚至优于1 mm。表明地心运动的预测精度能够满足基于地球质量中心(center of mass of the total earth system,CM)的瞬时地球参考框架的建立与维持。展开更多
动态障碍物一直是阻碍智能体自主导航发展的关键因素,而躲避障碍物和清理障碍物是两种解决动态障碍物问题的有效方法。近年来,多智能体躲避动态障碍物(避障)问题受到了广大学者的关注,优秀的多智能体避障算法纷纷涌现。然而,多智能体清...动态障碍物一直是阻碍智能体自主导航发展的关键因素,而躲避障碍物和清理障碍物是两种解决动态障碍物问题的有效方法。近年来,多智能体躲避动态障碍物(避障)问题受到了广大学者的关注,优秀的多智能体避障算法纷纷涌现。然而,多智能体清理动态障碍物(清障)问题却无人问津,相对应的多智能体清障算法更是屈指可数。为解决多智能体清障问题,文中提出了一种基于深度确定性策略梯度与注意力Critic的多智能体协同清障算法(Multi-Agent Cooperative Algorithm for Obstacle Clearance Based on Deep Deterministic Policy Gradient and Attention Critic, MACOC)。首先,创建了首个多智能体协同清障的环境模型,定义了多智能体及动态障碍物的运动学模型,并根据智能体和动态障碍物数量的不同,构建了4种仿真实验环境;其次,将多智能体协同清障过程定义为马尔可夫决策过程(Markov Decision Process, MDP),构建了多智能体t的状态空间、动作空间和奖励函数;最后,提出一种基于深度确定性策略梯度与注意力Critic的多智能体协同清障算法,并在多智能体协同清障仿真环境中与经典的多智能体强化学习算法进行对比。实验证明,相比对比算法,所提出的MACOC算法清障的成功率更高、速度更快,对复杂环境的适应性更好。展开更多
文摘地心运动会影响地球参考框架原点的准确性,是地球参考框架进行非线性维持必须考虑的因素之一,因此提出对地心运动进行多尺度的建模和预测,以实现毫米级地球参考框架的建立和维持。采用网平移法计算的地心运动、全球地球物理流体中心(global geophysical fluids center,GGFC)和国际GNSS服务(international gnss service,IGS)第三次重处理(IGSR03)提供的3组地心运动数据,首先对其一致性和差异进行了分析,然后分别利用谐波模型和Diff-LSTM模型对地心运动进行了长期和短期的建模与预测,结果显示,GGFC地心运动的预测精度优于1.5 mm,而Diff-LSTM模型的地心运动预测结果在短期内优于谐波模型,当预测步长为17时,GGFC和IGSR03的地心运动预测精度均能达到甚至优于1 mm。表明地心运动的预测精度能够满足基于地球质量中心(center of mass of the total earth system,CM)的瞬时地球参考框架的建立与维持。
文摘动态障碍物一直是阻碍智能体自主导航发展的关键因素,而躲避障碍物和清理障碍物是两种解决动态障碍物问题的有效方法。近年来,多智能体躲避动态障碍物(避障)问题受到了广大学者的关注,优秀的多智能体避障算法纷纷涌现。然而,多智能体清理动态障碍物(清障)问题却无人问津,相对应的多智能体清障算法更是屈指可数。为解决多智能体清障问题,文中提出了一种基于深度确定性策略梯度与注意力Critic的多智能体协同清障算法(Multi-Agent Cooperative Algorithm for Obstacle Clearance Based on Deep Deterministic Policy Gradient and Attention Critic, MACOC)。首先,创建了首个多智能体协同清障的环境模型,定义了多智能体及动态障碍物的运动学模型,并根据智能体和动态障碍物数量的不同,构建了4种仿真实验环境;其次,将多智能体协同清障过程定义为马尔可夫决策过程(Markov Decision Process, MDP),构建了多智能体t的状态空间、动作空间和奖励函数;最后,提出一种基于深度确定性策略梯度与注意力Critic的多智能体协同清障算法,并在多智能体协同清障仿真环境中与经典的多智能体强化学习算法进行对比。实验证明,相比对比算法,所提出的MACOC算法清障的成功率更高、速度更快,对复杂环境的适应性更好。