This article presents a numerical solution for the flow of a Newtonian fluid over an impermeable stretching sheet embedded in a porous medium with the power law surface velocity and variable thickness in the presence ...This article presents a numerical solution for the flow of a Newtonian fluid over an impermeable stretching sheet embedded in a porous medium with the power law surface velocity and variable thickness in the presence of thermal radiation. The flow is caused by non-linear stretching of a sheet. Thermal conductivity of the fluid is assumed to vary linearly with temperature. The governing partial differential equations (PDEs) are transformed into a system of coupled non-linear ordinary differential equations (ODEs) with appropriate boundary conditions for various physical parameters. The remaining system of ODEs is solved numerically using a differential transformation method (DTM). The effects of the porous parameter, the wall thickness parameter, the radiation parameter, the thermal conductivity parameter, and the Prandtl number on the flow and temperature profiles are presented. Moreover, the local skin-friction and the Nusselt numbers are presented. Comparison of the obtained numerical results is made with previously published results in some special cases, with good agreement. The results obtained in this paper confirm the idea that DTM is a powerful mathematical tool and can be applied to a large class of linear and non-linear problems in different fields of science and engineering.展开更多
An approximate solution to Richards' equation is presented, mathematically describing a sort of unsaturated single phase fluid flow in porous media. The approach is a differential transform method (DTM) with interm...An approximate solution to Richards' equation is presented, mathematically describing a sort of unsaturated single phase fluid flow in porous media. The approach is a differential transform method (DTM) with intermediate variables. Two examples are given to demonstrate the accuracy of the presented solution.展开更多
In this paper, the Adomian Decomposition Method (ADM) and the Differential Transform Method (DTM) are applied to solve the multi-pantograph delay equations. The sufficient conditions are given to assure the convergenc...In this paper, the Adomian Decomposition Method (ADM) and the Differential Transform Method (DTM) are applied to solve the multi-pantograph delay equations. The sufficient conditions are given to assure the convergence of these methods. Several examples are presented to demonstrate the efficiency and reliability of the ADM and the DTM;numerical results are discussed, compared with exact solution. The results of the ADM and the DTM show its better performance than others. These methods give the desired accurate results only in a few terms and in a series form of the solution. The approach is simple and effective. These methods are used to solve many linear and nonlinear problems and reduce the size of computational work.展开更多
In the present paper a differential transformation method(DTM)is used to obtain the solution of momentum and heat transfer equations of non-Newtonian fluid flow in an axisymmetric channel with porous wall.The comparis...In the present paper a differential transformation method(DTM)is used to obtain the solution of momentum and heat transfer equations of non-Newtonian fluid flow in an axisymmetric channel with porous wall.The comparison between the results from the differential transfomiation method and numerical method are in well agreement which proofs the capability of this method for solving such problems.After this validity,results are investigated for the velocity and temperature for various values of Reynolds number,Prandtl number and power law index.展开更多
文摘This article presents a numerical solution for the flow of a Newtonian fluid over an impermeable stretching sheet embedded in a porous medium with the power law surface velocity and variable thickness in the presence of thermal radiation. The flow is caused by non-linear stretching of a sheet. Thermal conductivity of the fluid is assumed to vary linearly with temperature. The governing partial differential equations (PDEs) are transformed into a system of coupled non-linear ordinary differential equations (ODEs) with appropriate boundary conditions for various physical parameters. The remaining system of ODEs is solved numerically using a differential transformation method (DTM). The effects of the porous parameter, the wall thickness parameter, the radiation parameter, the thermal conductivity parameter, and the Prandtl number on the flow and temperature profiles are presented. Moreover, the local skin-friction and the Nusselt numbers are presented. Comparison of the obtained numerical results is made with previously published results in some special cases, with good agreement. The results obtained in this paper confirm the idea that DTM is a powerful mathematical tool and can be applied to a large class of linear and non-linear problems in different fields of science and engineering.
基金Project supported by the National Basic Research Program of China(973 Program)(No.2011CB013800)
文摘An approximate solution to Richards' equation is presented, mathematically describing a sort of unsaturated single phase fluid flow in porous media. The approach is a differential transform method (DTM) with intermediate variables. Two examples are given to demonstrate the accuracy of the presented solution.
文摘In this paper, the Adomian Decomposition Method (ADM) and the Differential Transform Method (DTM) are applied to solve the multi-pantograph delay equations. The sufficient conditions are given to assure the convergence of these methods. Several examples are presented to demonstrate the efficiency and reliability of the ADM and the DTM;numerical results are discussed, compared with exact solution. The results of the ADM and the DTM show its better performance than others. These methods give the desired accurate results only in a few terms and in a series form of the solution. The approach is simple and effective. These methods are used to solve many linear and nonlinear problems and reduce the size of computational work.
文摘In the present paper a differential transformation method(DTM)is used to obtain the solution of momentum and heat transfer equations of non-Newtonian fluid flow in an axisymmetric channel with porous wall.The comparison between the results from the differential transfomiation method and numerical method are in well agreement which proofs the capability of this method for solving such problems.After this validity,results are investigated for the velocity and temperature for various values of Reynolds number,Prandtl number and power law index.