A reasonable unsupported roof distance(URD) when advancing underground coal mine roadways can contribute greatly to safe and rapid roadway development.A mechanical model of the roof,using the relationship between the ...A reasonable unsupported roof distance(URD) when advancing underground coal mine roadways can contribute greatly to safe and rapid roadway development.A mechanical model of the roof,using the relationship between the roof stress distribution and URD,obtained by the difference method,and roof stability according to the in-situ roof stress and rock mass strength was developed.We subsequently designed a proper range of URD,developed a testing method of URD with the function of mining protection,evaluated roof stability through analyzing the test data and then determined a reasonable URD.Considering the factors of the geological conditions,the immediate roof stability and the efficiency of the labor arrangement system,the URD of the advancing roadway of 9802 working face in Zhangshuanglou coal mine was determined to be 6 m using the proposed method.The results show that,when a 2 m length of roadway was reinforced by temporary support and high pre-stressed bolt support after the roadway advancement of 6 m per cycle,the speed and the security of the roadway development can be achieved and the advance rate can reach more than 400 m per month.展开更多
The constant panel method within the framework of potential flow theory in the time domain is developed for solving the hydrodynamic interactions between two parallel ships with forward speed.When solving problems wit...The constant panel method within the framework of potential flow theory in the time domain is developed for solving the hydrodynamic interactions between two parallel ships with forward speed.When solving problems within a time domain framework,the free water surface needs to simultaneously satisfy both the kinematic and dynamic boundary conditions of the free water surface.This provides conditions for adding artificial damping layers.Using the Runge−Kutta method to solve equations related to time.An upwind differential scheme is used in the present method to deal with the convection terms on the free surface to prevent waves upstream.Through the comparison with the available experimental data and other numerical methods,the present method is proved to have good mesh convergence,and satisfactory results can be obtained.The constant panel method is applied to calculate the hydrodynamic interaction responses of two parallel ships advancing in head waves.Numerical simulations are conducted on the effects of forward speed,different longitudinal and lateral distances on the motion response of two modified Wigley ships in head waves.Then further investigations are conducted on the effects of different ship types on the motion response.展开更多
An optimized detection model based on weighted entropy for multiple input multiple output (MIMO) radar in multipath environment is presented. After defining the multipath distance difference (MDD), the multipath recei...An optimized detection model based on weighted entropy for multiple input multiple output (MIMO) radar in multipath environment is presented. After defining the multipath distance difference (MDD), the multipath received signal model with four paths is built systematically. Both the variance and correlation coefficient of multipath scattering coefficient with MDD are analyzed, which indicates that the multipath variable can decrease the detection performance by reducing the echo power. By making use of the likelihood ratio test (LRT), a new method based on weighted entropy is introduced to use the positive multipath echo power and suppress the negative echo power, which results in better performance. Simulation results show that, compared with non-multipath environment or other recently developed methods, the proposed method can achieve detection performance improvement with the increase of sensors.展开更多
There are many DOA estimation methods based on different signal features, and these methods are often evaluated by experimental results, but lack the necessary theoretical basis. Therefore, a direction of arrival (DOA...There are many DOA estimation methods based on different signal features, and these methods are often evaluated by experimental results, but lack the necessary theoretical basis. Therefore, a direction of arrival (DOA) estimation system based on self-organizing map (SOM) and designed for arbitrarily distributed sensor array is proposed. The essential principle of this method is that the map from distance difference of arrival (DDOA) to DOA is Lipschitz continuity, it indicates the similar topology between them, and thus Kohonen SOM is a suitable network to classify DOA through DDOA. The simulation results show that the DOA estimation errors are less than 1° for most signals between 0° to 180°. Compared to MUSIC, Root-MUSIC, ESPRIT, and RBF, the errors of signals under signal-to-noise ratios (SNR) declines from 20 dB to 2 dB are robust, SOM is better than RBF and almost close to MUSIC. Further, the network can be trained in advance, which makes it possible to be implemented in real-time.展开更多
In dense target and false detection scenario of four time difference of arrival (TDOA) for multi-passive-sensor location system, the global optimal data association algorithm has to be adopted. In view of the heavy ...In dense target and false detection scenario of four time difference of arrival (TDOA) for multi-passive-sensor location system, the global optimal data association algorithm has to be adopted. In view of the heavy calculation burden of the traditional optimal assignment algorithm, this paper proposes a new global optimal assignment algorithm and a 2-stage association algorithm based on a statistic test. Compared with the traditional optimal algorithm, the new optimal algorithm avoids the complicated operations for finding the target position before we calculate association cost; hence, much of the procedure time is saved. In the 2-stage association algorithm, a large number of false location points are eliminated from candidate associations in advance. Therefore, the operation is further decreased, and the correct data association probability is improved in varying degrees. Both the complexity analyses and simulation results can verify the effectiveness of the new algorithms.展开更多
基金supported by the State Key Laboratory of Coal Resources and Sate Mining,China University of Mining and Technology (No.SKLCRSM13X07)the National Natural Science Foundation of China (No.51174195)+1 种基金Chinese National Programs for Fundamental Research and Development (No.2013CB227900)the Fundamental Research Funds for the Central Universities (No.2014XT01)
文摘A reasonable unsupported roof distance(URD) when advancing underground coal mine roadways can contribute greatly to safe and rapid roadway development.A mechanical model of the roof,using the relationship between the roof stress distribution and URD,obtained by the difference method,and roof stability according to the in-situ roof stress and rock mass strength was developed.We subsequently designed a proper range of URD,developed a testing method of URD with the function of mining protection,evaluated roof stability through analyzing the test data and then determined a reasonable URD.Considering the factors of the geological conditions,the immediate roof stability and the efficiency of the labor arrangement system,the URD of the advancing roadway of 9802 working face in Zhangshuanglou coal mine was determined to be 6 m using the proposed method.The results show that,when a 2 m length of roadway was reinforced by temporary support and high pre-stressed bolt support after the roadway advancement of 6 m per cycle,the speed and the security of the roadway development can be achieved and the advance rate can reach more than 400 m per month.
基金supported by the National Natural Science Foundation of China(Grant Nos.52271278 and 52111530137)the Natural Science Found of Jiangsu Province(Grant No.BK20221389)the Newton Advanced Fellowships(Grant No.NAF\R1\180304)by the Royal Society.
文摘The constant panel method within the framework of potential flow theory in the time domain is developed for solving the hydrodynamic interactions between two parallel ships with forward speed.When solving problems within a time domain framework,the free water surface needs to simultaneously satisfy both the kinematic and dynamic boundary conditions of the free water surface.This provides conditions for adding artificial damping layers.Using the Runge−Kutta method to solve equations related to time.An upwind differential scheme is used in the present method to deal with the convection terms on the free surface to prevent waves upstream.Through the comparison with the available experimental data and other numerical methods,the present method is proved to have good mesh convergence,and satisfactory results can be obtained.The constant panel method is applied to calculate the hydrodynamic interaction responses of two parallel ships advancing in head waves.Numerical simulations are conducted on the effects of forward speed,different longitudinal and lateral distances on the motion response of two modified Wigley ships in head waves.Then further investigations are conducted on the effects of different ship types on the motion response.
基金supported by the Natural Science Foundation Research Project of Shaanxi Province(2016JQ6020)
文摘An optimized detection model based on weighted entropy for multiple input multiple output (MIMO) radar in multipath environment is presented. After defining the multipath distance difference (MDD), the multipath received signal model with four paths is built systematically. Both the variance and correlation coefficient of multipath scattering coefficient with MDD are analyzed, which indicates that the multipath variable can decrease the detection performance by reducing the echo power. By making use of the likelihood ratio test (LRT), a new method based on weighted entropy is introduced to use the positive multipath echo power and suppress the negative echo power, which results in better performance. Simulation results show that, compared with non-multipath environment or other recently developed methods, the proposed method can achieve detection performance improvement with the increase of sensors.
文摘There are many DOA estimation methods based on different signal features, and these methods are often evaluated by experimental results, but lack the necessary theoretical basis. Therefore, a direction of arrival (DOA) estimation system based on self-organizing map (SOM) and designed for arbitrarily distributed sensor array is proposed. The essential principle of this method is that the map from distance difference of arrival (DDOA) to DOA is Lipschitz continuity, it indicates the similar topology between them, and thus Kohonen SOM is a suitable network to classify DOA through DDOA. The simulation results show that the DOA estimation errors are less than 1° for most signals between 0° to 180°. Compared to MUSIC, Root-MUSIC, ESPRIT, and RBF, the errors of signals under signal-to-noise ratios (SNR) declines from 20 dB to 2 dB are robust, SOM is better than RBF and almost close to MUSIC. Further, the network can be trained in advance, which makes it possible to be implemented in real-time.
基金the National Natural Science Foundation of China (Grant Nos. 60172033, 60672139 and 60672140)the Excellent Ph. D Paper Author Foundation of China (Grant No. 200237)and the Natural Science Foundation of Shandong Province (Grant No. 2005ZX01)
文摘In dense target and false detection scenario of four time difference of arrival (TDOA) for multi-passive-sensor location system, the global optimal data association algorithm has to be adopted. In view of the heavy calculation burden of the traditional optimal assignment algorithm, this paper proposes a new global optimal assignment algorithm and a 2-stage association algorithm based on a statistic test. Compared with the traditional optimal algorithm, the new optimal algorithm avoids the complicated operations for finding the target position before we calculate association cost; hence, much of the procedure time is saved. In the 2-stage association algorithm, a large number of false location points are eliminated from candidate associations in advance. Therefore, the operation is further decreased, and the correct data association probability is improved in varying degrees. Both the complexity analyses and simulation results can verify the effectiveness of the new algorithms.