By using a criterion for asymptotic stability in Banach space BC, a group of sufficient condi-tioas for a dynamical model with infinite delay which is derived from hematology were obtained, which refined the result in...By using a criterion for asymptotic stability in Banach space BC, a group of sufficient condi-tioas for a dynamical model with infinite delay which is derived from hematology were obtained, which refined the result in the reference [ 10] got by the second author herself.展开更多
The aim of this paper is to show that the following difference equation:Xn+1=α+(xn-k/xn-m)^p, n=0,1,2,…,where α 〉 -1, p 〉 O, k,m ∈ N are fixed, 0 ≤ m 〈 k, x-k, x-k+1,…,x-m,…,X-1, x0 are positive, has p...The aim of this paper is to show that the following difference equation:Xn+1=α+(xn-k/xn-m)^p, n=0,1,2,…,where α 〉 -1, p 〉 O, k,m ∈ N are fixed, 0 ≤ m 〈 k, x-k, x-k+1,…,x-m,…,X-1, x0 are positive, has positive nonoscillatory solutions which converge to the positive equilibrium x=α+1. It is interesting that the method described in the paper, in some cases can also be applied when the parameter α is variable.展开更多
In this paper,a sufficient condition for the global asymptotic stability of the solutions of the following nonlinear delay difference equation is obtained, xn+ 1=xn+xn- 1xn- 2 +a xnxn- 1+xn- 2 +a, n =0 ,1 ,..., ...In this paper,a sufficient condition for the global asymptotic stability of the solutions of the following nonlinear delay difference equation is obtained, xn+ 1=xn+xn- 1xn- 2 +a xnxn- 1+xn- 2 +a, n =0 ,1 ,..., where a∈ [0 ,∞ ) and the initial values x- 2 ,x- 1,x0 ∈ (0 ,∞ ) .As a special case,a conjecture by Ladas is confirmed.展开更多
Some sufficient, conditions for boundedness and persistence and global asymptotic stability of solutions for a class of delay difference equations with higher order are obtained, which partly solve G. Ladas' two o...Some sufficient, conditions for boundedness and persistence and global asymptotic stability of solutions for a class of delay difference equations with higher order are obtained, which partly solve G. Ladas' two open problems and extend some known results.展开更多
In this paper we prove a global attractivity result for the unique positive equilibrium point of a difference equation,which improves and generalizes some known ones in the existing literature.Especially,our results c...In this paper we prove a global attractivity result for the unique positive equilibrium point of a difference equation,which improves and generalizes some known ones in the existing literature.Especially,our results completely solve an open problem and some conjectures proposed in[1,2,3,4].展开更多
The difference equation △xn+ pnxn-k = f(n,xn-1,...,xn-1m), n = 0, 1,2,.. is considered, where {pn} is a sequence of nonnegative real numbers, m ∈ {1, 2, ,... }, k,l1,..., lm ∈ {0, 1, 2,,... }. Some sufficient co...The difference equation △xn+ pnxn-k = f(n,xn-1,...,xn-1m), n = 0, 1,2,.. is considered, where {pn} is a sequence of nonnegative real numbers, m ∈ {1, 2, ,... }, k,l1,..., lm ∈ {0, 1, 2,,... }. Some sufficient conditions for the global asymptotic stability of zero solution of the equation are obtained.展开更多
For functional difference equations with unbounded delay,we characterized the existence of totally stable and asymptotically almost periodic solution by using stability properties of a bounded solution in a certain li...For functional difference equations with unbounded delay,we characterized the existence of totally stable and asymptotically almost periodic solution by using stability properties of a bounded solution in a certain limiting equation.展开更多
New theorems of asymptotical stability and uniformly asymptotical stability for nonautonomous difference equations are given in this paper. The classical Liapunov asymptotical stability theorem of nonautonomous differ...New theorems of asymptotical stability and uniformly asymptotical stability for nonautonomous difference equations are given in this paper. The classical Liapunov asymptotical stability theorem of nonautonomous difference equations relies on the existence of a positive definite Liapunov function that has an indefinitely small upper bound and whose variation along a given nonautonomous difference equations is negative definite. In this paper, we consider the case that the Liapunov function is only positive definite and its variation is semi-negative definite. At these weaker conditions, we put forward a new asymptotical stability theorem of nonautonomous difference equations by adding to extra conditions on the variation. After that, in addition to the hypotheses of our new asymptotical stability theorem, we obtain a new uniformly asymptotical stability theorem of nonautonomous difference equations provided that the Liapunov function has an indefinitely small upper bound. Example is given to verify our results in the last.展开更多
There are many works on the asymptotic stability of second dimensional nonlinear differential equation. In particular, these results only concern with the system which includes one or two terms, whereas few works conc...There are many works on the asymptotic stability of second dimensional nonlinear differential equation. In particular, these results only concern with the system which includes one or two terms, whereas few works concern with system which includes more than two terms. In this paper, system which includes four nonlinear terms are studies. We obtain the global asymptotic stability of zero solution, and discard the condition which require the Liapunov function trends to infinity, and only require that the positive orbit is bounded.展开更多
In this paper the global attractivity of the nonlinear difference equationis investigated, where a,b, A ∈ (0,∞), k is an positive integer and the initial conditions x- k, …, x-1 and x0 are arbitrary positive number...In this paper the global attractivity of the nonlinear difference equationis investigated, where a,b, A ∈ (0,∞), k is an positive integer and the initial conditions x- k, …, x-1 and x0 are arbitrary positive numbers. It is shown that the unique positive equilibrium of the equation is global attractive. As a corollary, the result gives a positive confirmation on the conjecture presented by Kocic and Ladas [1,p154].展开更多
The existence, uniqueness and global asymptotic stability for the equilibrium of Hopfield-type neural networks with diffusion effects are studied. When the activation functions are monotonously nondecreasing, differen...The existence, uniqueness and global asymptotic stability for the equilibrium of Hopfield-type neural networks with diffusion effects are studied. When the activation functions are monotonously nondecreasing, differentiable, and the interconnected matrix is related to the Lyapunov diagonal stable matrix, the sufficient conditions guaranteeing the existence of the equilibrium of the system are obtained by applying the topological degree theory. By means of constructing the suitable average Lyapunov functions, the global asymptotic stability of the equilibrium of the system is also investigated. It is shown that the equilibrium (if it exists) is globally asymptotically stable and this implies that the equilibrium of the system is unique.展开更多
In this paper,we investigate the boundedness character,the global attractivity and the periodic nature of the system of rational difference equations:x=p+y/x,y=q+x/y,n=0,1,2…,where p>0,q>0,k∈{1,2,…} and the i...In this paper,we investigate the boundedness character,the global attractivity and the periodic nature of the system of rational difference equations:x=p+y/x,y=q+x/y,n=0,1,2…,where p>0,q>0,k∈{1,2,…} and the initial values xi,yi∈(0,∞),i=-k,-k+1,…,0. Some new results are obtained.展开更多
This paper is concerned with the following nonlinear difference equation:x_(n+1)=sum from i=1 to l A_(s_i)x_(n-s_i)/B+C multiply from j=1 to k x_(n-t_j) +D_x_n,n=0,1,…(1.1).The more simple suffcient conditions of asy...This paper is concerned with the following nonlinear difference equation:x_(n+1)=sum from i=1 to l A_(s_i)x_(n-s_i)/B+C multiply from j=1 to k x_(n-t_j) +D_x_n,n=0,1,…(1.1).The more simple suffcient conditions of asymptotic stability are obtained by using a smart technique,which extends and includes partially corresponding results obtained in the references [6-9].The global behavior of the solutions is investigated.In addition,in order to support analytic results,some numerical simulations to the special equations are presented.展开更多
A detailed analysis was carried out on global asymptotic behavior of a kind of stochastic SIRS(susceptible-infective-removed-susceptible)model.This model has been obtained by introducing stochasticity into the origina...A detailed analysis was carried out on global asymptotic behavior of a kind of stochastic SIRS(susceptible-infective-removed-susceptible)model.This model has been obtained by introducing stochasticity into the original deterministic SIRS model via the technique of parameter perturbation which is standard in stochastic population modeling.By making corresponding Lyapunov function and using It formula,the condition for the solution of the model tending to the disease free equilibrium asymptotically was obtained.Under this condition,the epidemics will die out as time goes by.Based on this,almost surely exponential stability was analyzed.展开更多
The main purpose of this paper is to study the dynamic behavior of the rational difference equation of the fourth order Where α, β and γ are positive constants and the initial conditions y<sub>-3</sub>,...The main purpose of this paper is to study the dynamic behavior of the rational difference equation of the fourth order Where α, β and γ are positive constants and the initial conditions y<sub>-3</sub>, y<sub>-2</sub>, y<sub>-1</sub>, y<sub>0</sub> are arbitrary positive real numbers. Also, we obtain the solution of some special cases of this equation and investigate the existence of a periodic solutions of these equations. Finally, some numerical examples will be given to explicate our results. .展开更多
J. L Lions and W. A. Stranss [1] have proved the existence of a global solution of the initial boundary value problem for nonlinear generalized Euler-Possion-Darboux equation. In this paper we are going to investigate...J. L Lions and W. A. Stranss [1] have proved the existence of a global solution of the initial boundary value problem for nonlinear generalized Euler-Possion-Darboux equation. In this paper we are going to investigate the asymptotic behavior of the global solution by a difference inequality.展开更多
The study suggests asymptotic behavior of the solution to a new class of difference equations: . where a, bi, α and β are positive real numbers for i = 0, 1, · · · , k , and the initial conditions ψ-...The study suggests asymptotic behavior of the solution to a new class of difference equations: . where a, bi, α and β are positive real numbers for i = 0, 1, · · · , k , and the initial conditions ψ-j, ψ-j+1, · · ·, ψ0 are randomly positive real numbers where j = 2k + 1. Accordingly, we consider the stability, boundedness and periodicity of the solutions of this recursive sequence. Indeed, we give some interesting counter examples in order to verify our strong results.展开更多
In this paper, we consider Lotka-Volterra predator-prey model between one and three species. Two cases are distinguished. The first is Lotka-Volterra model of one prey-three predators and the second is Lotka-Volterra ...In this paper, we consider Lotka-Volterra predator-prey model between one and three species. Two cases are distinguished. The first is Lotka-Volterra model of one prey-three predators and the second is Lotka-Volterra model of one predator-three preys. The existence conditions of nonnega-tive equilibrium points are established. The local stability analysis of the system is carried out.展开更多
Using a Razumikhin-type theorem,we obtain sufficient conditions for the global asymptotic stability of the zero solution of a certain fourth order functional differential equations.The result generalizes the well know...Using a Razumikhin-type theorem,we obtain sufficient conditions for the global asymptotic stability of the zero solution of a certain fourth order functional differential equations.The result generalizes the well known results.展开更多
The initial-boundary value problem for a class of nonlinear hyperbolic equations system in bounded domain is studied. The existence of global solutions for this problem is proved by constructing a stable set, and obta...The initial-boundary value problem for a class of nonlinear hyperbolic equations system in bounded domain is studied. The existence of global solutions for this problem is proved by constructing a stable set, and obtain the asymptotic stability of global solutions by means of a difference inequality.展开更多
基金Supported by the Natural Science Foundation of Guangdong Province(011471)Supported by the Education Bureau(0120)
文摘By using a criterion for asymptotic stability in Banach space BC, a group of sufficient condi-tioas for a dynamical model with infinite delay which is derived from hematology were obtained, which refined the result in the reference [ 10] got by the second author herself.
文摘The aim of this paper is to show that the following difference equation:Xn+1=α+(xn-k/xn-m)^p, n=0,1,2,…,where α 〉 -1, p 〉 O, k,m ∈ N are fixed, 0 ≤ m 〈 k, x-k, x-k+1,…,x-m,…,X-1, x0 are positive, has positive nonoscillatory solutions which converge to the positive equilibrium x=α+1. It is interesting that the method described in the paper, in some cases can also be applied when the parameter α is variable.
基金Supported by the National Natural Science Foundation of China(1 0 0 71 0 2 2 ) Mathematical TianyuanFoundation of China(TY1 0 0 2 6 0 0 2 - 0 1 - 0 5 - 0 3 ) Shanghai Priority Academic Discipline Foundation
文摘In this paper,a sufficient condition for the global asymptotic stability of the solutions of the following nonlinear delay difference equation is obtained, xn+ 1=xn+xn- 1xn- 2 +a xnxn- 1+xn- 2 +a, n =0 ,1 ,..., where a∈ [0 ,∞ ) and the initial values x- 2 ,x- 1,x0 ∈ (0 ,∞ ) .As a special case,a conjecture by Ladas is confirmed.
文摘Some sufficient, conditions for boundedness and persistence and global asymptotic stability of solutions for a class of delay difference equations with higher order are obtained, which partly solve G. Ladas' two open problems and extend some known results.
基金the National Natural Science Foundation of China(61473340)the Distinguished Professor Foundation of Qianjiang Scholar in Zhejiang Province+1 种基金the National Natural Science Foundation of Zhejiang Province(LQ13A010019)the National Natural Science Foundation of Zhejiang University of Science and Technology(F701108G14).
文摘In this paper we prove a global attractivity result for the unique positive equilibrium point of a difference equation,which improves and generalizes some known ones in the existing literature.Especially,our results completely solve an open problem and some conjectures proposed in[1,2,3,4].
基金Supported by Natural Science Foundaton of Henan Providence(0111051200)
文摘The difference equation △xn+ pnxn-k = f(n,xn-1,...,xn-1m), n = 0, 1,2,.. is considered, where {pn} is a sequence of nonnegative real numbers, m ∈ {1, 2, ,... }, k,l1,..., lm ∈ {0, 1, 2,,... }. Some sufficient conditions for the global asymptotic stability of zero solution of the equation are obtained.
文摘For functional difference equations with unbounded delay,we characterized the existence of totally stable and asymptotically almost periodic solution by using stability properties of a bounded solution in a certain limiting equation.
文摘New theorems of asymptotical stability and uniformly asymptotical stability for nonautonomous difference equations are given in this paper. The classical Liapunov asymptotical stability theorem of nonautonomous difference equations relies on the existence of a positive definite Liapunov function that has an indefinitely small upper bound and whose variation along a given nonautonomous difference equations is negative definite. In this paper, we consider the case that the Liapunov function is only positive definite and its variation is semi-negative definite. At these weaker conditions, we put forward a new asymptotical stability theorem of nonautonomous difference equations by adding to extra conditions on the variation. After that, in addition to the hypotheses of our new asymptotical stability theorem, we obtain a new uniformly asymptotical stability theorem of nonautonomous difference equations provided that the Liapunov function has an indefinitely small upper bound. Example is given to verify our results in the last.
文摘There are many works on the asymptotic stability of second dimensional nonlinear differential equation. In particular, these results only concern with the system which includes one or two terms, whereas few works concern with system which includes more than two terms. In this paper, system which includes four nonlinear terms are studies. We obtain the global asymptotic stability of zero solution, and discard the condition which require the Liapunov function trends to infinity, and only require that the positive orbit is bounded.
文摘In this paper the global attractivity of the nonlinear difference equationis investigated, where a,b, A ∈ (0,∞), k is an positive integer and the initial conditions x- k, …, x-1 and x0 are arbitrary positive numbers. It is shown that the unique positive equilibrium of the equation is global attractive. As a corollary, the result gives a positive confirmation on the conjecture presented by Kocic and Ladas [1,p154].
基金Project supported by the National Natural Science Foundation of China (No.10571078)the Natural Science Foundation of Gansu Province of China (No.3ZX062-B25-012)
文摘The existence, uniqueness and global asymptotic stability for the equilibrium of Hopfield-type neural networks with diffusion effects are studied. When the activation functions are monotonously nondecreasing, differentiable, and the interconnected matrix is related to the Lyapunov diagonal stable matrix, the sufficient conditions guaranteeing the existence of the equilibrium of the system are obtained by applying the topological degree theory. By means of constructing the suitable average Lyapunov functions, the global asymptotic stability of the equilibrium of the system is also investigated. It is shown that the equilibrium (if it exists) is globally asymptotically stable and this implies that the equilibrium of the system is unique.
文摘In this paper,we investigate the boundedness character,the global attractivity and the periodic nature of the system of rational difference equations:x=p+y/x,y=q+x/y,n=0,1,2…,where p>0,q>0,k∈{1,2,…} and the initial values xi,yi∈(0,∞),i=-k,-k+1,…,0. Some new results are obtained.
基金Supported by the Science and Technology Project of Chongqing Municiple Education Commission(KJ110501)Supported by the Research Initiation Project for High-level Talents of North China University of Water Resources and Electric Power(201035)Supported by the NSF of the Hebei Higher Education Institutions(Z2011111)
文摘This paper is concerned with the following nonlinear difference equation:x_(n+1)=sum from i=1 to l A_(s_i)x_(n-s_i)/B+C multiply from j=1 to k x_(n-t_j) +D_x_n,n=0,1,…(1.1).The more simple suffcient conditions of asymptotic stability are obtained by using a smart technique,which extends and includes partially corresponding results obtained in the references [6-9].The global behavior of the solutions is investigated.In addition,in order to support analytic results,some numerical simulations to the special equations are presented.
基金Foundation of Shanghai for Outstanding Young Teachers in University,China(No.B-5300-08-007)the 085 Knowledge Innovation Project of Shanghai Municipal Education Commission,China(No.Z08509008-01)Humanities and SocialScience Fund General Project of Ministry of Education,China(No.08JA630051)
文摘A detailed analysis was carried out on global asymptotic behavior of a kind of stochastic SIRS(susceptible-infective-removed-susceptible)model.This model has been obtained by introducing stochasticity into the original deterministic SIRS model via the technique of parameter perturbation which is standard in stochastic population modeling.By making corresponding Lyapunov function and using It formula,the condition for the solution of the model tending to the disease free equilibrium asymptotically was obtained.Under this condition,the epidemics will die out as time goes by.Based on this,almost surely exponential stability was analyzed.
文摘The main purpose of this paper is to study the dynamic behavior of the rational difference equation of the fourth order Where α, β and γ are positive constants and the initial conditions y<sub>-3</sub>, y<sub>-2</sub>, y<sub>-1</sub>, y<sub>0</sub> are arbitrary positive real numbers. Also, we obtain the solution of some special cases of this equation and investigate the existence of a periodic solutions of these equations. Finally, some numerical examples will be given to explicate our results. .
文摘J. L Lions and W. A. Stranss [1] have proved the existence of a global solution of the initial boundary value problem for nonlinear generalized Euler-Possion-Darboux equation. In this paper we are going to investigate the asymptotic behavior of the global solution by a difference inequality.
文摘The study suggests asymptotic behavior of the solution to a new class of difference equations: . where a, bi, α and β are positive real numbers for i = 0, 1, · · · , k , and the initial conditions ψ-j, ψ-j+1, · · ·, ψ0 are randomly positive real numbers where j = 2k + 1. Accordingly, we consider the stability, boundedness and periodicity of the solutions of this recursive sequence. Indeed, we give some interesting counter examples in order to verify our strong results.
文摘In this paper, we consider Lotka-Volterra predator-prey model between one and three species. Two cases are distinguished. The first is Lotka-Volterra model of one prey-three predators and the second is Lotka-Volterra model of one predator-three preys. The existence conditions of nonnega-tive equilibrium points are established. The local stability analysis of the system is carried out.
基金The project is supported by Natural Science Foundation of Hebei Provice.
文摘Using a Razumikhin-type theorem,we obtain sufficient conditions for the global asymptotic stability of the zero solution of a certain fourth order functional differential equations.The result generalizes the well known results.
基金supported by National Natural Science Foundation of China(61273016)The Natural Science Foundation of Zhejiang Province(Y6100016)The Public Welfare Technology Application Research Project of Zhejiang Province Science and Technology Department(2015C33088)
文摘The initial-boundary value problem for a class of nonlinear hyperbolic equations system in bounded domain is studied. The existence of global solutions for this problem is proved by constructing a stable set, and obtain the asymptotic stability of global solutions by means of a difference inequality.