In this paper,a sufficient condition for the global asymptotic stability of the solutions of the following nonlinear delay difference equation is obtained, xn+ 1=xn+xn- 1xn- 2 +a xnxn- 1+xn- 2 +a, n =0 ,1 ,..., ...In this paper,a sufficient condition for the global asymptotic stability of the solutions of the following nonlinear delay difference equation is obtained, xn+ 1=xn+xn- 1xn- 2 +a xnxn- 1+xn- 2 +a, n =0 ,1 ,..., where a∈ [0 ,∞ ) and the initial values x- 2 ,x- 1,x0 ∈ (0 ,∞ ) .As a special case,a conjecture by Ladas is confirmed.展开更多
The computational stability of the explicit difference schemes of the forced dissipative nonlinear evolution equations is analyzed and the computational quasi-stability criterion of explicit difference schemes of the ...The computational stability of the explicit difference schemes of the forced dissipative nonlinear evolution equations is analyzed and the computational quasi-stability criterion of explicit difference schemes of the forced dissipative nonlinear atmospheric equations is obtained on account of the concept of computational quasi-stability, Therefore, it provides the new train of thought and theoretical basis for designing computational stable difference scheme of the forced dissipative nonlinear atmospheric equations. Key words Computational quasi-stability - Computational stability - Forced dissipative nonlinear evolution equation - Explicit difference scheme This work was supported by the National Outstanding Youth Scientist Foundation of China (Grant No. 49825109), the Key Innovation Project of Chinese Academy of Sciences (KZCX1-10-07), the National Natural Science Foundation of China (Grant Nos, 49905007 and 49975020) and the Outstanding State Key Laboratory Project (Grant No. 40023001).展开更多
New theorems of asymptotical stability and uniformly asymptotical stability for nonautonomous difference equations are given in this paper. The classical Liapunov asymptotical stability theorem of nonautonomous differ...New theorems of asymptotical stability and uniformly asymptotical stability for nonautonomous difference equations are given in this paper. The classical Liapunov asymptotical stability theorem of nonautonomous difference equations relies on the existence of a positive definite Liapunov function that has an indefinitely small upper bound and whose variation along a given nonautonomous difference equations is negative definite. In this paper, we consider the case that the Liapunov function is only positive definite and its variation is semi-negative definite. At these weaker conditions, we put forward a new asymptotical stability theorem of nonautonomous difference equations by adding to extra conditions on the variation. After that, in addition to the hypotheses of our new asymptotical stability theorem, we obtain a new uniformly asymptotical stability theorem of nonautonomous difference equations provided that the Liapunov function has an indefinitely small upper bound. Example is given to verify our results in the last.展开更多
This paper considers the one-dimensional dissipative cubic nonlinear SchrSdinger equation with zero Dirichlet boundary conditions on a bounded domain. The equation is discretized in time by a linear implicit three-lev...This paper considers the one-dimensional dissipative cubic nonlinear SchrSdinger equation with zero Dirichlet boundary conditions on a bounded domain. The equation is discretized in time by a linear implicit three-level central difference scheme, which has analogous discrete conservation laws of charge and energy. The convergence with two orders and the stability of the scheme are analysed using a priori estimates. Numerical tests show that the three-level scheme is more efficient.展开更多
Based on the forced dissipetive nonlinear evolution equations for describing the motion of atmosphere and ocean, the computational stability of the explicit difference schemes of the forced dissipotive nonlinear atmos...Based on the forced dissipetive nonlinear evolution equations for describing the motion of atmosphere and ocean, the computational stability of the explicit difference schemes of the forced dissipotive nonlinear atmospheric and oceanic equations is analyzed and the computationally stable explicit complete square conservative difference schemes are constructed. The theoretical analysis and numerical experiment prove that the explicit complete square conservative difference schemes are computationally stable and deserve to be disseminated.展开更多
In this paper, we present a compact finite difference method for a class of fourth-order nonlinear neutral delay sub-diffusion equations in two-dimensional space. The fourth-order problem is first transformed into a s...In this paper, we present a compact finite difference method for a class of fourth-order nonlinear neutral delay sub-diffusion equations in two-dimensional space. The fourth-order problem is first transformed into a second-order system by a reduced-order method. Next by using compact operator to approximate the second order space derivatives and L2-1σ formula to approximate the time fractional derivative, the difference scheme which is fourth order in space and second order in time is obtained. Then, the existence and uniqueness of solution, the convergence rate of and the stability of the scheme are proved. Finally, numerical results are given to verify the accuracy and validity of the scheme.展开更多
A numerical simulation for a model of wood drying process is considered. The model is given by a couple of nonlinear differential equations. One is a nonlinear parabolic equation and the other one is a nonlinear ordin...A numerical simulation for a model of wood drying process is considered. The model is given by a couple of nonlinear differential equations. One is a nonlinear parabolic equation and the other one is a nonlinear ordinary equation. A difference scheme is derived by the method of reduction of order. First, a new variable is introduced and the original problem is rewritten into a system of the first-order differential equations. Secondly, a difference scheme is constructed for the later problem. The solvability, stability and convergence of the difference scheme are proved by the energy method. The convergence order of the difference scheme is secondorder both in time and in space. A prior error estimate is put forward. The new variable is put aside to reduce the computational cost. A numerical example testifies the theoretical result.展开更多
The multi-dimensional system of nonlinear partial differential equations is considered. In two-dimensional case, this system describes process of vein formation in higher plants. Variable directions finite difference ...The multi-dimensional system of nonlinear partial differential equations is considered. In two-dimensional case, this system describes process of vein formation in higher plants. Variable directions finite difference scheme is constructed. The stability and convergence of that scheme are studied. Numerical experiments are carried out. The appropriate graphical illustrations and tables are given.展开更多
By using the method in [3], several useful estimations of the derivatives of the solution of the boundary value problem for a nonlinear ordinary differential equation with a turning point are obtained. With the help o...By using the method in [3], several useful estimations of the derivatives of the solution of the boundary value problem for a nonlinear ordinary differential equation with a turning point are obtained. With the help of the technique in [4], the uniform convergence on the small parameter e for a difference scheme is proved. At the end of this paper, a numerical example is given. The numerical result coincides with theoretical analysis.展开更多
In this paper,we present a linearized compact difference scheme for onedimensional time-space fractional nonlinear diffusion-wave equations with initial boundary value conditions.The initial singularity of the solutio...In this paper,we present a linearized compact difference scheme for onedimensional time-space fractional nonlinear diffusion-wave equations with initial boundary value conditions.The initial singularity of the solution is considered,which often generates a singular source and increases the difficulty of numerically solving the equation.The Crank-Nicolson technique,combined with the midpoint formula and the second-order convolution quadrature formula,is used for the time discretization.To increase the spatial accuracy,a fourth-order compact difference approximation,which is constructed by two compact difference operators,is adopted for spatial discretization.Then,the unconditional stability and convergence of the proposed scheme are strictly established with superlinear convergence accuracy in time and fourth-order accuracy in space.Finally,numerical experiments are given to support our theoretical results.展开更多
For the infinite delay difference equations of the general form, two new uniform asymptotic stability criteria are established in terms of the discrete Liapunov functionals.
For the non-conservative difference schemes of nonlinear evolution equations with aperiodic boundary conditions, taken one-dimensional nonlinear advection equation as an example, a new method for judging the computati...For the non-conservative difference schemes of nonlinear evolution equations with aperiodic boundary conditions, taken one-dimensional nonlinear advection equation as an example, a new method for judging the computational stability is given. It is proved to be practical and effective through several numerical examples. The stability criteria obtained by this method are really the necessary conditions of computational stability.展开更多
The general criteria of stability for equihbrium points of scalar autonomous difference equations are given, wich cover all the cases as long as the right-hand function has continuous derivatives up to the desired ord...The general criteria of stability for equihbrium points of scalar autonomous difference equations are given, wich cover all the cases as long as the right-hand function has continuous derivatives up to the desired order. Thus, the stability problems of scalar autonomous difference equations are thoroughly solved. The proofs of the obtained criteria are mathematically rigorous and complete. Also, several exam pies are given to illustrate the obtained results.展开更多
A new concept of computational quasi-stability (CQS) is introduced to study the computational stability (CS) of the forced dissipative nonlinear (FDN) evolution equations. Based on the concept, the CQS criterion of di...A new concept of computational quasi-stability (CQS) is introduced to study the computational stability (CS) of the forced dissipative nonlinear (FDN) evolution equations. Based on the concept, the CQS criterion of difference scheme of FDN atmospheric equations is obtained. So it provides the theoretical basis for designing the computational stable difference scheme of FDN atmospheric equations.展开更多
The system of two-dimensional nonlinear partial differential equations is considered. This system describes the vein formation in meristematic tissues of young leaves. Variable directions difference scheme is construc...The system of two-dimensional nonlinear partial differential equations is considered. This system describes the vein formation in meristematic tissues of young leaves. Variable directions difference scheme is constructed and investigated. Absolute stability regarding space and time steps of scheme is shown. The convergence statement for the constructed scheme is proved. Rate of convergence is given. Various numerical experiments are carried out and results of some of them are considered in this paper. Comparison of numerical experiments with the results of the theoretical investigation is given too.展开更多
In this paper,a compact finite difference scheme for the nonlinear fractional integro-differential equation with weak singularity at the initial time is developed,with O(N^(-(2-α))+M^(-4))accuracy order,where N;M den...In this paper,a compact finite difference scheme for the nonlinear fractional integro-differential equation with weak singularity at the initial time is developed,with O(N^(-(2-α))+M^(-4))accuracy order,where N;M denote the numbers of grids in temporal and spatial direction,α ∈(0,1)is the fractional order.To recover the full accuracy based on the regularity requirement of the solution,we adopt the L1 method and the trapezoidal product integration(PI)rule with graded meshes to discretize the Caputo derivative and the Riemann-Liouville integral,respectively,further handle the nonlinear term carefully by the Newton linearized method.Based on the discrete fractional Gr¨onwall inequality and preserved discrete coefficients of Riemann-Liouville fractional integral,the stability and convergence of the proposed scheme are analyzed by the energy method.Theoretical results are also confirmed by a numerical example.展开更多
We consider the(2+1)-dimensional nonlinear Schrodinger equation with power-law nonlinearity under the parity-time-symmetry potential by using the Crank-Nicolson alternating direction implicit difference scheme,which c...We consider the(2+1)-dimensional nonlinear Schrodinger equation with power-law nonlinearity under the parity-time-symmetry potential by using the Crank-Nicolson alternating direction implicit difference scheme,which can also be used to solve general boundary problems under the premise of ensuring accuracy.We use linear Fourier analysis to verify the unconditional stability of the scheme.To demonstrate the effectiveness of the scheme,we compare the numerical results with the exact soliton solutions.Moreover,by using the scheme,we test the stability of the solitons under the small environmental disturbances.展开更多
In this paper, we establish a criterion of unformly asymptotic stability for finite delay difference systems in terms of two measures by employing Lyapunov functionals method.
基金Supported by the National Natural Science Foundation of China(1 0 0 71 0 2 2 ) Mathematical TianyuanFoundation of China(TY1 0 0 2 6 0 0 2 - 0 1 - 0 5 - 0 3 ) Shanghai Priority Academic Discipline Foundation
文摘In this paper,a sufficient condition for the global asymptotic stability of the solutions of the following nonlinear delay difference equation is obtained, xn+ 1=xn+xn- 1xn- 2 +a xnxn- 1+xn- 2 +a, n =0 ,1 ,..., where a∈ [0 ,∞ ) and the initial values x- 2 ,x- 1,x0 ∈ (0 ,∞ ) .As a special case,a conjecture by Ladas is confirmed.
基金the National Outstanding Youth Scientist Foundation of China (GrantNo. 49825109), the Key Innovation Project of Chinese Academ
文摘The computational stability of the explicit difference schemes of the forced dissipative nonlinear evolution equations is analyzed and the computational quasi-stability criterion of explicit difference schemes of the forced dissipative nonlinear atmospheric equations is obtained on account of the concept of computational quasi-stability, Therefore, it provides the new train of thought and theoretical basis for designing computational stable difference scheme of the forced dissipative nonlinear atmospheric equations. Key words Computational quasi-stability - Computational stability - Forced dissipative nonlinear evolution equation - Explicit difference scheme This work was supported by the National Outstanding Youth Scientist Foundation of China (Grant No. 49825109), the Key Innovation Project of Chinese Academy of Sciences (KZCX1-10-07), the National Natural Science Foundation of China (Grant Nos, 49905007 and 49975020) and the Outstanding State Key Laboratory Project (Grant No. 40023001).
文摘New theorems of asymptotical stability and uniformly asymptotical stability for nonautonomous difference equations are given in this paper. The classical Liapunov asymptotical stability theorem of nonautonomous difference equations relies on the existence of a positive definite Liapunov function that has an indefinitely small upper bound and whose variation along a given nonautonomous difference equations is negative definite. In this paper, we consider the case that the Liapunov function is only positive definite and its variation is semi-negative definite. At these weaker conditions, we put forward a new asymptotical stability theorem of nonautonomous difference equations by adding to extra conditions on the variation. After that, in addition to the hypotheses of our new asymptotical stability theorem, we obtain a new uniformly asymptotical stability theorem of nonautonomous difference equations provided that the Liapunov function has an indefinitely small upper bound. Example is given to verify our results in the last.
文摘This paper considers the one-dimensional dissipative cubic nonlinear SchrSdinger equation with zero Dirichlet boundary conditions on a bounded domain. The equation is discretized in time by a linear implicit three-level central difference scheme, which has analogous discrete conservation laws of charge and energy. The convergence with two orders and the stability of the scheme are analysed using a priori estimates. Numerical tests show that the three-level scheme is more efficient.
基金the Outstanding State Key Laboratory Project of National Science Foundation of China (Grant No. 40023001 )the Key Innovatio
文摘Based on the forced dissipetive nonlinear evolution equations for describing the motion of atmosphere and ocean, the computational stability of the explicit difference schemes of the forced dissipotive nonlinear atmospheric and oceanic equations is analyzed and the computationally stable explicit complete square conservative difference schemes are constructed. The theoretical analysis and numerical experiment prove that the explicit complete square conservative difference schemes are computationally stable and deserve to be disseminated.
文摘In this paper, we present a compact finite difference method for a class of fourth-order nonlinear neutral delay sub-diffusion equations in two-dimensional space. The fourth-order problem is first transformed into a second-order system by a reduced-order method. Next by using compact operator to approximate the second order space derivatives and L2-1σ formula to approximate the time fractional derivative, the difference scheme which is fourth order in space and second order in time is obtained. Then, the existence and uniqueness of solution, the convergence rate of and the stability of the scheme are proved. Finally, numerical results are given to verify the accuracy and validity of the scheme.
基金The National Natural Science Foundation of China (No10471023)
文摘A numerical simulation for a model of wood drying process is considered. The model is given by a couple of nonlinear differential equations. One is a nonlinear parabolic equation and the other one is a nonlinear ordinary equation. A difference scheme is derived by the method of reduction of order. First, a new variable is introduced and the original problem is rewritten into a system of the first-order differential equations. Secondly, a difference scheme is constructed for the later problem. The solvability, stability and convergence of the difference scheme are proved by the energy method. The convergence order of the difference scheme is secondorder both in time and in space. A prior error estimate is put forward. The new variable is put aside to reduce the computational cost. A numerical example testifies the theoretical result.
文摘The multi-dimensional system of nonlinear partial differential equations is considered. In two-dimensional case, this system describes process of vein formation in higher plants. Variable directions finite difference scheme is constructed. The stability and convergence of that scheme are studied. Numerical experiments are carried out. The appropriate graphical illustrations and tables are given.
文摘By using the method in [3], several useful estimations of the derivatives of the solution of the boundary value problem for a nonlinear ordinary differential equation with a turning point are obtained. With the help of the technique in [4], the uniform convergence on the small parameter e for a difference scheme is proved. At the end of this paper, a numerical example is given. The numerical result coincides with theoretical analysis.
基金supported by Natural Science Foundation of Jiangsu Province of China(Grant No.BK20201427)National Natural Science Foundation of China(Grant Nos.11701502 and 11871065)。
文摘In this paper,we present a linearized compact difference scheme for onedimensional time-space fractional nonlinear diffusion-wave equations with initial boundary value conditions.The initial singularity of the solution is considered,which often generates a singular source and increases the difficulty of numerically solving the equation.The Crank-Nicolson technique,combined with the midpoint formula and the second-order convolution quadrature formula,is used for the time discretization.To increase the spatial accuracy,a fourth-order compact difference approximation,which is constructed by two compact difference operators,is adopted for spatial discretization.Then,the unconditional stability and convergence of the proposed scheme are strictly established with superlinear convergence accuracy in time and fourth-order accuracy in space.Finally,numerical experiments are given to support our theoretical results.
基金Project supported by the National Natural Science Foundation of China (No. 19831030).
文摘For the infinite delay difference equations of the general form, two new uniform asymptotic stability criteria are established in terms of the discrete Liapunov functionals.
文摘For the non-conservative difference schemes of nonlinear evolution equations with aperiodic boundary conditions, taken one-dimensional nonlinear advection equation as an example, a new method for judging the computational stability is given. It is proved to be practical and effective through several numerical examples. The stability criteria obtained by this method are really the necessary conditions of computational stability.
文摘The general criteria of stability for equihbrium points of scalar autonomous difference equations are given, wich cover all the cases as long as the right-hand function has continuous derivatives up to the desired order. Thus, the stability problems of scalar autonomous difference equations are thoroughly solved. The proofs of the obtained criteria are mathematically rigorous and complete. Also, several exam pies are given to illustrate the obtained results.
文摘A new concept of computational quasi-stability (CQS) is introduced to study the computational stability (CS) of the forced dissipative nonlinear (FDN) evolution equations. Based on the concept, the CQS criterion of difference scheme of FDN atmospheric equations is obtained. So it provides the theoretical basis for designing the computational stable difference scheme of FDN atmospheric equations.
文摘The system of two-dimensional nonlinear partial differential equations is considered. This system describes the vein formation in meristematic tissues of young leaves. Variable directions difference scheme is constructed and investigated. Absolute stability regarding space and time steps of scheme is shown. The convergence statement for the constructed scheme is proved. Rate of convergence is given. Various numerical experiments are carried out and results of some of them are considered in this paper. Comparison of numerical experiments with the results of the theoretical investigation is given too.
基金supported by the National Natural Science Foundation of China(No.11701103,11801095)Young Top-notch Talent Program of Guangdong Province(No.2017GC010379)+2 种基金Natural Science Foundation of Guangdong Province(No.2022A1515012147,2019A1515010876,2017A030310538)the Project of Science and Technology of Guangzhou(No.201904010341,202102020704)the Opening Project of Guangdong Province Key Laboratory of Computational Science at the Sun Yat-sen University(2021023)。
文摘In this paper,a compact finite difference scheme for the nonlinear fractional integro-differential equation with weak singularity at the initial time is developed,with O(N^(-(2-α))+M^(-4))accuracy order,where N;M denote the numbers of grids in temporal and spatial direction,α ∈(0,1)is the fractional order.To recover the full accuracy based on the regularity requirement of the solution,we adopt the L1 method and the trapezoidal product integration(PI)rule with graded meshes to discretize the Caputo derivative and the Riemann-Liouville integral,respectively,further handle the nonlinear term carefully by the Newton linearized method.Based on the discrete fractional Gr¨onwall inequality and preserved discrete coefficients of Riemann-Liouville fractional integral,the stability and convergence of the proposed scheme are analyzed by the energy method.Theoretical results are also confirmed by a numerical example.
文摘We consider the(2+1)-dimensional nonlinear Schrodinger equation with power-law nonlinearity under the parity-time-symmetry potential by using the Crank-Nicolson alternating direction implicit difference scheme,which can also be used to solve general boundary problems under the premise of ensuring accuracy.We use linear Fourier analysis to verify the unconditional stability of the scheme.To demonstrate the effectiveness of the scheme,we compare the numerical results with the exact soliton solutions.Moreover,by using the scheme,we test the stability of the solitons under the small environmental disturbances.
基金This work is supported by Mathematics Tianyuan Fund (No.A0324624),NNSF of China (No.10371040),Shanghai Priority Academic Discipline.
文摘In this paper, we establish a criterion of unformly asymptotic stability for finite delay difference systems in terms of two measures by employing Lyapunov functionals method.