Straw checkerboard sand barriers with a porous structure that consists of a pervious upper portion and a dense lower portion are widely used to achieve great sand control effect.Considering this,and resolving the seri...Straw checkerboard sand barriers with a porous structure that consists of a pervious upper portion and a dense lower portion are widely used to achieve great sand control effect.Considering this,and resolving the serious earth surface undercutting problem after HDPE sandbreak net checkboard barriers setting,the authors used HDPE(high-density polyethylene)materials to prepare new sandbreak materials with a similar porous structure.Through wind tunnel simulations and field sand control monitoring,we compared the sand control effect of three HDPE sandbreak nets with different porosity structure.Compared to the sandbreak net with uniform porosity structure,the three types of HDPE sandbreak nets with different porosity structure had poorer effect on reducing sand transport rates,but had longer effective protection distance before sandbreak nets at low wind velocity conditions(<12 m/s),longer effective protection distance at high wind velocity(>14 m/s)and longer effective protection distance between sandbreak nets at all experimental wind velocity conditions.Wind and sand control effect characteristics of HDPE sandbreak nets with different porosity structure provide an ideal material on semiburied checkerboard sand barriers for sand stabilization.By contrast,uniform-type sandbreak nets are used as materials on high upright sand fences for sand blocking.These HDPE sandbreak nets can be used to replace traditional sandbreak materials and have a very high potential for widespread and popular application in aeolian sand disaster control.展开更多
A new microelement method for the analyses of functionally graded structures was proposed. The key of this method is the maneuverable combination of two kinds of elements. Firstly, the macro elements are divided from ...A new microelement method for the analyses of functionally graded structures was proposed. The key of this method is the maneuverable combination of two kinds of elements. Firstly, the macro elements are divided from the functionally graded material structures by the normal finite elements. In order to reflect the functionally graded distributions of materials and the microconstitutions in each macro-element, the microelement method sets up the dense microelements in every macro-element, and translates nodes to the same as the normal finite elements by the degrees of freedom of all microelemental the compatibility conditions. This microelement method can fully reflect the micro constitutions and different components of materials, and its computational elements are the same as the normal finite elements, so it is an effective numerical method for the analyses of the functionally graded material structures. The three-dimensional analyses of functionally graded plates with medium components and different micro net structures are given by using the microelement method in this paper. The differences of the stress contour in the plane of functionally graded plates with different net microstructures are especially given in this paper.展开更多
The linear dispersion relation of a trapezoidally corrugated slow wave structure (TCSWS) is analyzed and presented. The size parameters of the TCSWS are chosen in such a way that they operate in the x-band frequency...The linear dispersion relation of a trapezoidally corrugated slow wave structure (TCSWS) is analyzed and presented. The size parameters of the TCSWS are chosen in such a way that they operate in the x-band frequency range. The dispersion relation is solved by utilizing the Rayleigh-Fourier method by expressing the radial function in terms of the Fourier series. A highly accurate synthetic technique is also applied to determine the complete dispersion characteristics from experimentally measured resonances (cold test). Periodic structures resonate at specific frequencies when the terminals are shorted numerical calculation, synthetic technique and cold appropriately. The dispersion characteristics obtained from test are compared, and an excellent agreement is achieved.展开更多
The structures of the bulk amorphous Zr41Ti14Cu12.5Nil0.0Be22.5 alloy have been analyzed in solid, supercooled liquid and liquid with X-ray diffraction. The first coordination sphere radii and the first coordination n...The structures of the bulk amorphous Zr41Ti14Cu12.5Nil0.0Be22.5 alloy have been analyzed in solid, supercooled liquid and liquid with X-ray diffraction. The first coordination sphere radii and the first coordination numbers are 0.312 um, 11.2 in solid state.10.932 nm, 10.932 in supercooled liquid region and 0.305 urn, 11.296 in liquid state. The structures are the same in different states. But it shows some tendency to crystallizing that the first coordination sphere radius and the first coordination number drop in supercooled liquid region.展开更多
Genetic factors play a key role in determination of the structure of the cloacal flora for newborn Chinese Alligators.We collected the cloacal microbiomes for 24 newborn Chinese Alligators from three different genetic...Genetic factors play a key role in determination of the structure of the cloacal flora for newborn Chinese Alligators.We collected the cloacal microbiomes for 24 newborn Chinese Alligators from three different genetic backgrounds for 16S gene amplicon sequencing.The number of cloacal flora for the Chinese Alligators from different groups was comparable but differed structurally.There were variations in proportions of floral compositions at the phylum and family levels;however,the main difference was at the genus level.There were two significant differences in richness and evenness among the three groups.Non-metric multidimensional scaling NMDS analysis revealed that the 24 samples could be clearly divided into three categories based on their genetic backgrounds(stress=0.0244).Thus,we postulated that newborn Chinese Alligators with different genetic backgrounds have different immune strengths,which affects individual responses to environmental microorganisms.In summary,newborn Chinese Alligators from different genetic backgrounds exhibit variations in cloacal microbiome.展开更多
<div style="text-align:justify;"> A series of different sequence structure containing stearyl acrylate (SA) and hydroxyethyl acrylate (HEA) copolymer were synthesized via reversible addition-fragmentat...<div style="text-align:justify;"> A series of different sequence structure containing stearyl acrylate (SA) and hydroxyethyl acrylate (HEA) copolymer were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. The crystallization property of PHEA-<em>b</em>-PSA, PHEA-<em>b</em>-PSA-<em>b</em>-PHEA, PSA-<em>b</em>-PHEA-<em>b</em>-PSA, PHEA-<em>co</em>-PSA, and PHEA-<em>grad-b</em>-PSA were characterized by Differential Scanning Calorimetry (DSC). The condensed structure of different sequence copolymers were investigated using small-angle X-ray scattering (SAXS). A series of copolymers with different sequence structure were coated on the surface of polyester fabric, which can be found that PHEA-b-PSA-b-PHEA block copolymer has good water repellency. </div>展开更多
In the context of global emission reduction, the low-carbon sustainable development of the construction industry has become an important research content. With the vigorous development of new industrial technologies, ...In the context of global emission reduction, the low-carbon sustainable development of the construction industry has become an important research content. With the vigorous development of new industrial technologies, the application of prefabrication technology to buildings had become a mainstream. However, the research on the role of prefabricated technology in reducing building carbon emissions was not yet comprehensive, and the research on the relationship between prefabricated structure types and carbon emissions in the construction stage was not yet thorough. Guided by life cycle assessment (LCA), this paper used the scenario analysis method to set different working conditions for five different structural systems, and used SimaPro software to evaluate the carbon emissions of prefabricated buildings in order to clarify the carbon emissions of prefabricated buildings under different structural systems, and explore their impact mechanisms in depth. Finally, take the existing buildings in China as an empirical study, the results showed that: 1) The carbon emissions produced by the four common prefabricated structural systems were almost the same. Different structures had different requirements for the combination of components. The carbon emissions of individual buildings would be superimposed according to the carbon emission characteristics of various individual components to form the final total carbon emissions. 2) When the building structure system requires more combinations of components, the greater the amount of transportation invested in the transportation process, the more carbon emissions would be caused. In the calculation of all individual building construction stages, the carbon emissions generated by tower cranes almost exceed the sum of the carbon emissions of all mobile machinery. 3) Prefabricated shear wall structures and prefabricated frame-shear wall structures require a large amount of hoisting of prefabricated shear walls, so the carbon emissions of their mechanical equipment were also the highest.展开更多
In this paper,optical properties of two-dimensional periodic annular slot cavity arrays in hexagonal close-packing on a silica substrate are theoretically characterized by finite difference time domain(FDTD) simulat...In this paper,optical properties of two-dimensional periodic annular slot cavity arrays in hexagonal close-packing on a silica substrate are theoretically characterized by finite difference time domain(FDTD) simulation method.By simulating reflectance spectra,electric field distribution,and charge distribution,we confirm that multiple cylindrical surface plasmon resonances can be excited in annular inclined slot cavities by linearly polarized light,in which the four reflectance dips are attributed to Fabry–Perot cavity resonances in the coaxial cavity.A coaxial waveguide mode TE11 will exist in these annular cavities,and the wavelengths of these reflectance dips are effectively tailored by changing the geometrical pattern of slot cavity and the dielectric materials filled in the cavities.These resonant wavelengths are localized in annular cavities with large electric field enhancement and dissipate gradually due to metal loss.The formation of an absorption peak can be explained from the aspect of phase matching conditions.We observed that the proposed structure can be tuned over the broad spectral range of 600–4000 nm by changing the outer and inner radii of the annular gaps,gap surface topography.Meanwhile,different lengths of the cavity may cause the shift of resonance dips.Also,we study the field enhancement at different vertical locations of the slit.In addition,dielectric materials filling in the annular gaps will result in a shift of the resonance wavelengths,which make the annular cavities good candidates for refractive index sensors.The refractive index sensitivity of annular cavities can also be tuned by the geometry size and the media around the cavity.Annular cavities with novel applications can be implied as surface enhanced Raman spectra substrates,refractive index sensors,nano-lasers,and optical trappers.展开更多
Shape-controlled synthesis of Pt-Cu alloy nanocrystals (NCs) with unique geometries is of great importance in the rational design and deterministic synthesis of highly active electrocatalysts. Herein, Pt-Cu alloy NC...Shape-controlled synthesis of Pt-Cu alloy nanocrystals (NCs) with unique geometries is of great importance in the rational design and deterministic synthesis of highly active electrocatalysts. Herein, Pt-Cu alloy NCs with concave octahedron (COH), porous octahedron (POH), yolk-shell (YSH), and nanoflower (NOF) structures were fabricated by altering the sequential reduction kinetics in a one-pot aqueous phase. The effect of the reaction kinetics on the formation of Pt-Cu bimetallic NCs with different morphologies was analyzed quantitatively. The concentrations of glycine and metal cation are demonstrated to play a key role in the reduction of Pt(Ⅳ) and Cu(Ⅱ) ions; these significantly affected the morphology of Pt-Cu NCs. These Pt-Cu alloy NCs exhibit substantially enhanced catalytic activity and durability for methanol and formic acid oxidation compared to the commercial Pt/C catalyst. Specifically, the COH and NOF Pt-Cu NCs with more step atoms, intragranular dislocations, and protrusions showed superior electrochemical properties than those of POH and YSH Pt-Cu NCs. The structure- property relationship between the Pt-Cu NCs and their electrochemical performances was also investigated in depth.展开更多
The structure and rheological properties of carbon-based particle suspensions, i.e., carbon black(CB), multi-wall carbon nanotube(MWNT), graphene and hollow carbon sphere(HCS) suspended in polydimethylsiloxane(...The structure and rheological properties of carbon-based particle suspensions, i.e., carbon black(CB), multi-wall carbon nanotube(MWNT), graphene and hollow carbon sphere(HCS) suspended in polydimethylsiloxane(PDMS), are investigated. In order to study the effect of particle shape on the structure and rheological properties of suspensions, the content of surface oxygen-containing functional groups of carbon-based particles is controlled to be similar. Original spherical-like CB(fractal filler), rod-like MWNT and sheet-like graphene form large agglomerates in PDMS, while spherical HCS particles disperse relatively well in PDMS. The dispersion state of carbon-based particles affects the critical concentration of forming a rheological percolation network. Under weak shear, negative normal stress differences(ΔN) are observed in CB, MWNT and graphene suspensions, while ΔN is nearly zero for HCS suspensions. It is concluded that the vorticity alignment of CB, MWNT and graphene agglomerates under shear results in the negative ΔN. However, no obvious structural change is observed in HCS suspension under weak shear, and accordingly, the ΔN is almost zero.展开更多
By simultaneously employing both an electro-optic modulator and carbon nanotube saturable absorber(CNT-SA)in a dual-loss modulator, a subnanosecond single mode-locking pulse underneath a Q-switched envelope with high ...By simultaneously employing both an electro-optic modulator and carbon nanotube saturable absorber(CNT-SA)in a dual-loss modulator, a subnanosecond single mode-locking pulse underneath a Q-switched envelope with high peak power was generated from a doubly Q-switched and mode-locked(QML) Nd:Lu_(0.15)Y_(0.85)VO_4 laser at1.06 μm for the first time, to our knowledge. CNTs with different wall structures—single-walled CNTs(SWCNTs),double-walled CNTs(DWCNTs), and multi-walled CNTs(MWCNTs)—were used as SAs in the experiment to investigate the single mode-locking pulse characteristics. At pump power of 10.72 W, the maximum peak power of1.312 MW was obtained with the DWCNT.展开更多
Microporous organic polymers(MOPs) have attracted considerable research interest because of their well-defined porosity,high surface area, lightweight nature, and tunable surface chemistry. The morphology of MOPs are ...Microporous organic polymers(MOPs) have attracted considerable research interest because of their well-defined porosity,high surface area, lightweight nature, and tunable surface chemistry. The morphology of MOPs are demonstrated to play a significant role in various applications although limited examples manifesting the importance of the MOP morphology in numerous applications have been reported. This review summarizes the recent progress in the design of MOPs using different techniques, including hard and soft template and direct synthesis methods. In addition, their applications, which possibly attribute to their shape, are discussed. Furthermore, the advantages and disadvantages of different methods are discussed, as well as their development and future challenges.展开更多
Accurate control of slab temperature and heating rate is an important significance to improve product performance and reduce carbon emissions for steel rolling reheating furnace(SRRF).Firstly,a spatial temporal distri...Accurate control of slab temperature and heating rate is an important significance to improve product performance and reduce carbon emissions for steel rolling reheating furnace(SRRF).Firstly,a spatial temporal distributed-nonlinear autoregressive with exogenous inputs correlation model(STD-NARXCM)to spatial temporal distributed-autoregressive with exogenous inputs correlation model(STD-ARXCM)in working point is established.Secondly,a new coordinated time-sharing control architecture in different time periods is proposed,which is along the length of the SRRF to improve the control performance.Thirdly,a hybrid control algorithm of expert-fuzzy is proposed to improve the dynamic of the temperature and the heating rate during time period 0 to t_(1).A hybrid control algorithm of expert-fuzzy-PID is proposed to enhance the control accuracy and the heating rate during time period t_(1) to t_(2).A hybrid control algorithm of expert-active disturbance rejection control(ADRC)is proposed to boost the anti-interference and the heating rate during time period t_(2) to t_(3).Finally,the experimental results show that the coordinated time-sharing algorithm can meet the process requirements,the maximum deviation of temperature value is 8-13.5℃.展开更多
基金fund by Strategic Priority Research Program of the Chinese Academy of Sciences(XD23060201)the National Natural Science Foundation of China(41730644,42171016,)。
文摘Straw checkerboard sand barriers with a porous structure that consists of a pervious upper portion and a dense lower portion are widely used to achieve great sand control effect.Considering this,and resolving the serious earth surface undercutting problem after HDPE sandbreak net checkboard barriers setting,the authors used HDPE(high-density polyethylene)materials to prepare new sandbreak materials with a similar porous structure.Through wind tunnel simulations and field sand control monitoring,we compared the sand control effect of three HDPE sandbreak nets with different porosity structure.Compared to the sandbreak net with uniform porosity structure,the three types of HDPE sandbreak nets with different porosity structure had poorer effect on reducing sand transport rates,but had longer effective protection distance before sandbreak nets at low wind velocity conditions(<12 m/s),longer effective protection distance at high wind velocity(>14 m/s)and longer effective protection distance between sandbreak nets at all experimental wind velocity conditions.Wind and sand control effect characteristics of HDPE sandbreak nets with different porosity structure provide an ideal material on semiburied checkerboard sand barriers for sand stabilization.By contrast,uniform-type sandbreak nets are used as materials on high upright sand fences for sand blocking.These HDPE sandbreak nets can be used to replace traditional sandbreak materials and have a very high potential for widespread and popular application in aeolian sand disaster control.
基金supported by the National Natural Science Foundation of China (No.10432030)the National Youth Science Foundation of China (No.10802091)the Scientific and Technical Foundation of China University of Mining and Technology (No.2007B013)
文摘A new microelement method for the analyses of functionally graded structures was proposed. The key of this method is the maneuverable combination of two kinds of elements. Firstly, the macro elements are divided from the functionally graded material structures by the normal finite elements. In order to reflect the functionally graded distributions of materials and the microconstitutions in each macro-element, the microelement method sets up the dense microelements in every macro-element, and translates nodes to the same as the normal finite elements by the degrees of freedom of all microelemental the compatibility conditions. This microelement method can fully reflect the micro constitutions and different components of materials, and its computational elements are the same as the normal finite elements, so it is an effective numerical method for the analyses of the functionally graded material structures. The three-dimensional analyses of functionally graded plates with medium components and different micro net structures are given by using the microelement method in this paper. The differences of the stress contour in the plane of functionally graded plates with different net microstructures are especially given in this paper.
文摘The linear dispersion relation of a trapezoidally corrugated slow wave structure (TCSWS) is analyzed and presented. The size parameters of the TCSWS are chosen in such a way that they operate in the x-band frequency range. The dispersion relation is solved by utilizing the Rayleigh-Fourier method by expressing the radial function in terms of the Fourier series. A highly accurate synthetic technique is also applied to determine the complete dispersion characteristics from experimentally measured resonances (cold test). Periodic structures resonate at specific frequencies when the terminals are shorted numerical calculation, synthetic technique and cold appropriately. The dispersion characteristics obtained from test are compared, and an excellent agreement is achieved.
文摘The structures of the bulk amorphous Zr41Ti14Cu12.5Nil0.0Be22.5 alloy have been analyzed in solid, supercooled liquid and liquid with X-ray diffraction. The first coordination sphere radii and the first coordination numbers are 0.312 um, 11.2 in solid state.10.932 nm, 10.932 in supercooled liquid region and 0.305 urn, 11.296 in liquid state. The structures are the same in different states. But it shows some tendency to crystallizing that the first coordination sphere radius and the first coordination number drop in supercooled liquid region.
基金supported by National Natural Science Foundation of China(No.32000355 and No.32370561)Research start-up funds of Anhui Normal University(No.751865)Anhui Forestry Science and Technology Innovation Project(AHLYCX-2021-01).
文摘Genetic factors play a key role in determination of the structure of the cloacal flora for newborn Chinese Alligators.We collected the cloacal microbiomes for 24 newborn Chinese Alligators from three different genetic backgrounds for 16S gene amplicon sequencing.The number of cloacal flora for the Chinese Alligators from different groups was comparable but differed structurally.There were variations in proportions of floral compositions at the phylum and family levels;however,the main difference was at the genus level.There were two significant differences in richness and evenness among the three groups.Non-metric multidimensional scaling NMDS analysis revealed that the 24 samples could be clearly divided into three categories based on their genetic backgrounds(stress=0.0244).Thus,we postulated that newborn Chinese Alligators with different genetic backgrounds have different immune strengths,which affects individual responses to environmental microorganisms.In summary,newborn Chinese Alligators from different genetic backgrounds exhibit variations in cloacal microbiome.
文摘<div style="text-align:justify;"> A series of different sequence structure containing stearyl acrylate (SA) and hydroxyethyl acrylate (HEA) copolymer were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. The crystallization property of PHEA-<em>b</em>-PSA, PHEA-<em>b</em>-PSA-<em>b</em>-PHEA, PSA-<em>b</em>-PHEA-<em>b</em>-PSA, PHEA-<em>co</em>-PSA, and PHEA-<em>grad-b</em>-PSA were characterized by Differential Scanning Calorimetry (DSC). The condensed structure of different sequence copolymers were investigated using small-angle X-ray scattering (SAXS). A series of copolymers with different sequence structure were coated on the surface of polyester fabric, which can be found that PHEA-b-PSA-b-PHEA block copolymer has good water repellency. </div>
文摘In the context of global emission reduction, the low-carbon sustainable development of the construction industry has become an important research content. With the vigorous development of new industrial technologies, the application of prefabrication technology to buildings had become a mainstream. However, the research on the role of prefabricated technology in reducing building carbon emissions was not yet comprehensive, and the research on the relationship between prefabricated structure types and carbon emissions in the construction stage was not yet thorough. Guided by life cycle assessment (LCA), this paper used the scenario analysis method to set different working conditions for five different structural systems, and used SimaPro software to evaluate the carbon emissions of prefabricated buildings in order to clarify the carbon emissions of prefabricated buildings under different structural systems, and explore their impact mechanisms in depth. Finally, take the existing buildings in China as an empirical study, the results showed that: 1) The carbon emissions produced by the four common prefabricated structural systems were almost the same. Different structures had different requirements for the combination of components. The carbon emissions of individual buildings would be superimposed according to the carbon emission characteristics of various individual components to form the final total carbon emissions. 2) When the building structure system requires more combinations of components, the greater the amount of transportation invested in the transportation process, the more carbon emissions would be caused. In the calculation of all individual building construction stages, the carbon emissions generated by tower cranes almost exceed the sum of the carbon emissions of all mobile machinery. 3) Prefabricated shear wall structures and prefabricated frame-shear wall structures require a large amount of hoisting of prefabricated shear walls, so the carbon emissions of their mechanical equipment were also the highest.
基金Project supported by the National Natural Science Foundation of China(Grant No.61178044)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20160969)the University Postgraduate Research and Innovation Project of Jiangsu Province,China(Grant No.KYLX 0723)
文摘In this paper,optical properties of two-dimensional periodic annular slot cavity arrays in hexagonal close-packing on a silica substrate are theoretically characterized by finite difference time domain(FDTD) simulation method.By simulating reflectance spectra,electric field distribution,and charge distribution,we confirm that multiple cylindrical surface plasmon resonances can be excited in annular inclined slot cavities by linearly polarized light,in which the four reflectance dips are attributed to Fabry–Perot cavity resonances in the coaxial cavity.A coaxial waveguide mode TE11 will exist in these annular cavities,and the wavelengths of these reflectance dips are effectively tailored by changing the geometrical pattern of slot cavity and the dielectric materials filled in the cavities.These resonant wavelengths are localized in annular cavities with large electric field enhancement and dissipate gradually due to metal loss.The formation of an absorption peak can be explained from the aspect of phase matching conditions.We observed that the proposed structure can be tuned over the broad spectral range of 600–4000 nm by changing the outer and inner radii of the annular gaps,gap surface topography.Meanwhile,different lengths of the cavity may cause the shift of resonance dips.Also,we study the field enhancement at different vertical locations of the slit.In addition,dielectric materials filling in the annular gaps will result in a shift of the resonance wavelengths,which make the annular cavities good candidates for refractive index sensors.The refractive index sensitivity of annular cavities can also be tuned by the geometry size and the media around the cavity.Annular cavities with novel applications can be implied as surface enhanced Raman spectra substrates,refractive index sensors,nano-lasers,and optical trappers.
基金This work was supported by the China Postdoctoral Science Foundation (No. 2017M610405), the Shandong Provincial Natural Science Foundation (Nos. ZR2015BM008 and ZR2017BB029) and Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.
文摘Shape-controlled synthesis of Pt-Cu alloy nanocrystals (NCs) with unique geometries is of great importance in the rational design and deterministic synthesis of highly active electrocatalysts. Herein, Pt-Cu alloy NCs with concave octahedron (COH), porous octahedron (POH), yolk-shell (YSH), and nanoflower (NOF) structures were fabricated by altering the sequential reduction kinetics in a one-pot aqueous phase. The effect of the reaction kinetics on the formation of Pt-Cu bimetallic NCs with different morphologies was analyzed quantitatively. The concentrations of glycine and metal cation are demonstrated to play a key role in the reduction of Pt(Ⅳ) and Cu(Ⅱ) ions; these significantly affected the morphology of Pt-Cu NCs. These Pt-Cu alloy NCs exhibit substantially enhanced catalytic activity and durability for methanol and formic acid oxidation compared to the commercial Pt/C catalyst. Specifically, the COH and NOF Pt-Cu NCs with more step atoms, intragranular dislocations, and protrusions showed superior electrochemical properties than those of POH and YSH Pt-Cu NCs. The structure- property relationship between the Pt-Cu NCs and their electrochemical performances was also investigated in depth.
基金financially supported by the National Natural Science Foundation of China(Nos.21474111,21222407 and 21274152)subsidized by the National Basic Research Program of China(973 Program,2012CB821500)
文摘The structure and rheological properties of carbon-based particle suspensions, i.e., carbon black(CB), multi-wall carbon nanotube(MWNT), graphene and hollow carbon sphere(HCS) suspended in polydimethylsiloxane(PDMS), are investigated. In order to study the effect of particle shape on the structure and rheological properties of suspensions, the content of surface oxygen-containing functional groups of carbon-based particles is controlled to be similar. Original spherical-like CB(fractal filler), rod-like MWNT and sheet-like graphene form large agglomerates in PDMS, while spherical HCS particles disperse relatively well in PDMS. The dispersion state of carbon-based particles affects the critical concentration of forming a rheological percolation network. Under weak shear, negative normal stress differences(ΔN) are observed in CB, MWNT and graphene suspensions, while ΔN is nearly zero for HCS suspensions. It is concluded that the vorticity alignment of CB, MWNT and graphene agglomerates under shear results in the negative ΔN. However, no obvious structural change is observed in HCS suspension under weak shear, and accordingly, the ΔN is almost zero.
基金National Natural Science Foundation of China(NSFC)(61378022)Fundamental Research Funds of Shandong University(2014JC032)
文摘By simultaneously employing both an electro-optic modulator and carbon nanotube saturable absorber(CNT-SA)in a dual-loss modulator, a subnanosecond single mode-locking pulse underneath a Q-switched envelope with high peak power was generated from a doubly Q-switched and mode-locked(QML) Nd:Lu_(0.15)Y_(0.85)VO_4 laser at1.06 μm for the first time, to our knowledge. CNTs with different wall structures—single-walled CNTs(SWCNTs),double-walled CNTs(DWCNTs), and multi-walled CNTs(MWCNTs)—were used as SAs in the experiment to investigate the single mode-locking pulse characteristics. At pump power of 10.72 W, the maximum peak power of1.312 MW was obtained with the DWCNT.
基金supported by the National Natural Science Foundation of China(21474033)the International Science and Technology Cooperation Program of China(2016YFE0124400)the Program for Huazhong University of Science and Technology Interdisciplinary Innovation Team(2016JCTD104)
文摘Microporous organic polymers(MOPs) have attracted considerable research interest because of their well-defined porosity,high surface area, lightweight nature, and tunable surface chemistry. The morphology of MOPs are demonstrated to play a significant role in various applications although limited examples manifesting the importance of the MOP morphology in numerous applications have been reported. This review summarizes the recent progress in the design of MOPs using different techniques, including hard and soft template and direct synthesis methods. In addition, their applications, which possibly attribute to their shape, are discussed. Furthermore, the advantages and disadvantages of different methods are discussed, as well as their development and future challenges.
基金This work was supported by the National Natural Science Foundation of China(Nos.62173032 and 62003038).
文摘Accurate control of slab temperature and heating rate is an important significance to improve product performance and reduce carbon emissions for steel rolling reheating furnace(SRRF).Firstly,a spatial temporal distributed-nonlinear autoregressive with exogenous inputs correlation model(STD-NARXCM)to spatial temporal distributed-autoregressive with exogenous inputs correlation model(STD-ARXCM)in working point is established.Secondly,a new coordinated time-sharing control architecture in different time periods is proposed,which is along the length of the SRRF to improve the control performance.Thirdly,a hybrid control algorithm of expert-fuzzy is proposed to improve the dynamic of the temperature and the heating rate during time period 0 to t_(1).A hybrid control algorithm of expert-fuzzy-PID is proposed to enhance the control accuracy and the heating rate during time period t_(1) to t_(2).A hybrid control algorithm of expert-active disturbance rejection control(ADRC)is proposed to boost the anti-interference and the heating rate during time period t_(2) to t_(3).Finally,the experimental results show that the coordinated time-sharing algorithm can meet the process requirements,the maximum deviation of temperature value is 8-13.5℃.