In this paper, frequencies of electromagnetic wave in a conductive wire are investigated theoretically. The conductive wire has specific variable material properties along the length of itself. Furthermore, material p...In this paper, frequencies of electromagnetic wave in a conductive wire are investigated theoretically. The conductive wire has specific variable material properties along the length of itself. Furthermore, material properties varying along the length of the wire are determined according to a specific mathematical function. In addition, the central finite difference method is applied to the Maxwell equations. The accuracy of the mode 1 frequency parameter is obtained to be 0.06%. This result can be obtained by assuming the number of conductive wire nodes 20. The obtained results show a very good agreement with the exact solution results.展开更多
For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study prop...For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study proposes to investigate the stability and accuracy of the central difference method(CDM)for RTDST considering the specimen mass participation coefficient.First,the theory of the CDM for RTDST is presented.Next,the stability and accuracy of the CDM for RTDST considering the specimen mass participation coefficient are investigated.Finally,numerical simulations and experimental tests are conducted for verifying the effectiveness of the method.The study indicates that the stability of the algorithm is affected by the mass participation coefficient of the specimen,and the stability limit first increases and then decreases as the mass participation coefficient increases.In most cases,the mass participation coefficient will increase the stability limit of the algorithm,but in specific circumstances,the algorithm may lose its stability.The stability and accuracy of the CDM considering the mass participation coefficient are verified by numerical simulations and experimental tests on a three-story frame structure with a tuned liquid damper.展开更多
In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolso...In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolson scheme.Following temporal discretization,the generalized finite difference method(GFDM)with supplementary nodes is utilized to address the nonlinear boundary value problems at each time node.These supplementary nodes are distributed along the boundary to match the number of boundary nodes.By incorporating supplementary nodes,the resulting nonlinear algebraic equations can effectively satisfy the governing equation and boundary conditions of the EFK equation.To demonstrate the efficacy of our approach,we present three numerical examples showcasing its performance in solving this nonlinear problem.展开更多
This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either...This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints.展开更多
In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order a...In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order accuracy, while the exponential-sum-approximation (ESA) is used to approximate the variable-order Caputo fractional derivative in the temporal direction, and a novel spatial sixth-order hybrid ESA-CCD method is implemented successfully. Finally, the accuracy of the proposed method is verified by numerical experiments.展开更多
To speed up three-dimensional (3D) DC resistivity modeling, we present a new multigrid method, the aggregation-based algebraic multigrid method (AGMG). We first discretize the differential equation of the secondar...To speed up three-dimensional (3D) DC resistivity modeling, we present a new multigrid method, the aggregation-based algebraic multigrid method (AGMG). We first discretize the differential equation of the secondary potential field with mixed boundary conditions by using a seven-point finite-difference method to obtain a large sparse system of linear equations. Then, we introduce the theory behind the pairwise aggregation algorithms for AGMG and use the conjugate-gradient method with the V-cycle AGMG preconditioner (AGMG-CG) to solve the linear equations. We use typical geoelectrical models to test the proposed AGMG-CG method and compare the results with analytical solutions and the 3DDCXH algorithm for 3D DC modeling (3DDCXH). In addition, we apply the AGMG-CG method to different grid sizes and geoelectrical models and compare it to different iterative methods, such as ILU-BICGSTAB, ILU-GCR, and SSOR-CG. The AGMG-CG method yields nearly linearly decreasing errors, whereas the number of iterations increases slowly with increasing grid size. The AGMG-CG method is precise and converges fast, and thus can improve the computational efficiency in forward modeling of three-dimensional DC resistivity.展开更多
A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions a...A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions according to Reynolds number.In the far-wall region,the thermal melt flow was calculated as Newtonian flow.In the near-wall region,the thermal melt flow was calculated as non-Newtonian flow.It was proved that the new algorithm based on the projection method with the implicit technique was correct through nonparametric statistics method and experiment.The simulation results show that the new algorithm based on the projection method with the implicit technique calculates more quickly than the solution algorithm-volume of fluid method using the explicit difference method.展开更多
An improved finite difference method (FDM)is described to solve existing problems such as low efficiency and poor convergence performance in the traditional method adopted to derive the pressure distribution of aero...An improved finite difference method (FDM)is described to solve existing problems such as low efficiency and poor convergence performance in the traditional method adopted to derive the pressure distribution of aerostatic bearings. A detailed theoretical analysis of the pressure distribution of the orifice-compensated aerostatic journal bearing is presented. The nonlinear dimensionless Reynolds equation of the aerostatic journal bearing is solved by the finite difference method. Based on the principle of flow equilibrium, a new iterative algorithm named the variable step size successive approximation method is presented to adjust the pressure at the orifice in the iterative process and enhance the efficiency and convergence performance of the algorithm. A general program is developed to analyze the pressure distribution of the aerostatic journal bearing by Matlab tool. The results show that the improved finite difference method is highly effective, reliable, stable, and convergent. Even when very thin gas film thicknesses (less than 2 Win)are considered, the improved calculation method still yields a result and converges fast.展开更多
Thermal stress simulation can provide a scientific reference to eliminate defects such as crack,residual stress centralization and deformation etc.,caused by thermal stress during casting solidification.To study the t...Thermal stress simulation can provide a scientific reference to eliminate defects such as crack,residual stress centralization and deformation etc.,caused by thermal stress during casting solidification.To study the thermal stress distribution during casting process,a unilateral thermal-stress coupling model was employed to simulate 3D casting stress using Finite Difference Method(FDM),namely all the traditional thermal-elastic-plastic equations are numerically and differentially discrete.A FDM/FDM numerical simulation system was developed to analyze temperature and stress fields during casting solidification process.Two practical verifications were carried out,and the results from simulation basically coincided with practical cases.The results indicated that the FDM/FDM stress simulation system can be used to simulate the formation of residual stress,and to predict the occurrence of hot tearing.Because heat transfer and stress analysis are all based on FDM,they can use the same FD model,which can avoid the matching process between different models,and hence reduce temperature-load transferring errors.This approach makes the simulation of fluid flow,heat transfer and stress analysis unify into one single model.展开更多
Based on some assumptions, the dynamic analysis model of anchorage system is established. The dynamic governing equation is expressed as finite difference format and programmed by using MATLAB language. Compared with ...Based on some assumptions, the dynamic analysis model of anchorage system is established. The dynamic governing equation is expressed as finite difference format and programmed by using MATLAB language. Compared with theoretical method, the finite difference method has been verified to be feasible by a case study. It is found that under seismic loading, the dynamic response of anchorage system is synchronously fluctuated with the seismic vibration. The change of displacement amplitude of material points is slight, and comparatively speaking, the displacement amplitude of the outside point is a little larger than that of the inside point, which shows amplification effect of surface. While the axial force amplitude transforms considerably from the inside to the outside. It increases first and reaches the peak value in the intersection between the anchoring section and free section, then decreases slowly in the free section. When considering damping effect of anchorage system, the finite difference method can reflect the time attenuation characteristic better, and the calculating result would be safer and more reasonable than the dynamic steady-state theoretical method. What is more, the finite difference method can be applied to the dynamic response analysis of harmonic and seismic random vibration for all kinds of anchor, and hence has a broad application prospect.展开更多
An explicit finite element-finite difference method for analyzing the effects of two-dimensional visco-elastic localtopography on earthquake ground motion is prOPosed in this paper. In the method, at first, the finite...An explicit finite element-finite difference method for analyzing the effects of two-dimensional visco-elastic localtopography on earthquake ground motion is prOPosed in this paper. In the method, at first, the finite elementdiscrete model is formed by using the artificial boundary and finite element method, and the dynamic equationsof local nodes in the discrete model are obtained according to the theory of the special finite element method similar to the finite difference method, and then the explicit step-by-step integration formulas are presented by usingthe explicit difference method for solving the visco-elastic dynamic equation and Generalized Multi-transmittingBoundary. The method has the advantages of saving computing time and computer memory space, and it is suitable for any case of topography and has high computing accuracy and good computing stability.展开更多
An implicit finite difference method is developed for a one-dimensional frac- tional percolation equation (FPE) with the Dirichlet and fractional boundary conditions. The stability and convergence are discussed for ...An implicit finite difference method is developed for a one-dimensional frac- tional percolation equation (FPE) with the Dirichlet and fractional boundary conditions. The stability and convergence are discussed for two special cases, i.e., a continued seep- age flow with a monotone percolation coefficient and a seepage flow with the fractional Neumann boundary condition. The accuracy and efficiency of the method are checked with two numerical examples.展开更多
This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-d...This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-dimensional potential problem can be transformed into a series of two-dimensional problems. For these two-dimensional problems, the improved moving least-squares (IMLS) approximation is applied to construct the shape function, which uses an orthogonal function system with a weight function as the basis functions. The Galerkin weak form is applied to obtain a discretized system equation, and the penalty method is employed to impose the essential boundary condition. The finite difference method is selected in the splitting direction. For the purposes of demonstration, some selected numerical examples are solved using the DSEFG method. The convergence study and error analysis of the DSEFG method are presented. The numerical examples show that the DSEFG method has greater computational precision and computational efficiency than the IEFG method.展开更多
A three-dimensional (3D) predictor-corrector finite difference method for standing wave is developed. It is applied to solve the 3D nonlinear potential flow equa- tions with a free surface. The 3D irregular tank is ...A three-dimensional (3D) predictor-corrector finite difference method for standing wave is developed. It is applied to solve the 3D nonlinear potential flow equa- tions with a free surface. The 3D irregular tank is mapped onto a fixed cubic tank through the proper coordinate transform schemes. The cubic tank is distributed by the staggered meshgrid, and the staggered meshgrid is used to denote the variables of the flow field. The predictor-corrector finite difference method is given to develop the difference equa- tions of the dynamic boundary equation and kinematic boundary equation. Experimental results show that, using the finite difference method of the predictor-corrector scheme, the numerical solutions agree well with the published results. The wave profiles of the standing wave with different amplitudes and wave lengths are studied. The numerical solutions are also analyzed and presented graphically.展开更多
Polysaccharides are the important biologically active components found in the peel of Dioscorea opposita Thunb.(DTTP).The influences of 4 extraction methods,namely hot water extraction(W),acidic extraction(HA),hot-com...Polysaccharides are the important biologically active components found in the peel of Dioscorea opposita Thunb.(DTTP).The influences of 4 extraction methods,namely hot water extraction(W),acidic extraction(HA),hot-compressed water extraction(HCW)and enzyme-assisted extraction(EAE),on the yields,physicochemical properties,hypoglycemic and antioxidant activities of polysaccharides from DTTP were studied and compared.Among these DTTP polysaccharides,DTTP-HA was outstanding in several respects.DTTP-HA was the most water soluble;it had the highest total carbohydrate content(85.08%),the highest uronic acid(13.20%)and the highest thermal stability.DTTP-HA and DTTP-W possessed a triple-helix structure.These 4 kinds of polysaccharides have the same types of monosaccharides,but in different molar percentages.Extraction method had a significant impact on the microstructures of the extracted polysaccharides.DTT-HA exhibited irregular structure with many holes.Among the 4 extracted methods,the DTTP-HA and DTTP-W initially exhibited higher hypoglycemic and antioxidant activities.The better bioactivities of DTTP-HA may be related to the above factors.The findings indicated that acid extraction is an effective method to extract polysaccharides with high biological activities from DTTP.展开更多
The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of c...The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of curl interface underground or “v” figure complex model, it is difficult to realize. So it is important to forward the complex geoelectricity model. This paper takes two Maxwell’s vorticity equations as departure point, makes use of the principles of Yee’s space grid model theory and the basic principle finite difference time domain method, and deduces a GPR forward system of equation of two dimensional spaces. The Mur super absorbed boundary condition is adopted to solve the super strong reflection on the interceptive boundary when there is the forward simulation. And a self-made program is used to process forward simulation to two typical geoelectricity model.展开更多
A fast explicit finite difference method (FEFDM),derived from the differential equations of one-dimensional steady pipe flow,was presented for calculation of wellhead injection pressure.Recalculation with a traditiona...A fast explicit finite difference method (FEFDM),derived from the differential equations of one-dimensional steady pipe flow,was presented for calculation of wellhead injection pressure.Recalculation with a traditional numerical method of the same equations corroborates well the reliability and rate of FEFDM.Moreover,a flow rate estimate method was developed for the project whose injection rate has not been clearly determined.A wellhead pressure regime determined by this method was successfully applied to the trial injection operations in Shihezi formation of Shenhua CCS Project,which is a good practice verification of FEFDM.At last,this method was used to evaluate the effect of friction and acceleration terms on the flow equation on the wellhead pressure.The result shows that for deep wellbore,the friction term can be omitted when flow rate is low and in a wide range of velocity the acceleration term can always be deleted.It is also shown that with flow rate increasing,the friction term can no longer be neglected.展开更多
A bearing capacity evaluation for the surface strip foundation on a working platform modelled on a twolayered substrate is considered in the study.The upper layer is assumed as man-made and wellcontrolled and thus non...A bearing capacity evaluation for the surface strip foundation on a working platform modelled on a twolayered substrate is considered in the study.The upper layer is assumed as man-made and wellcontrolled and thus non-variable.The lower layer modelling natural cohesive soil is subjected to spatial variability of undrained shear strength.The random failure mechanism method(RFMM)is used to evaluate the bearing capacity.This approach employs a kinematic assessment of the critical load and incorporates the averaging of three-dimensional(3 D)random field along dissipation surfaces that result from the failure mechanism geometry.A novel version of the approach considering an additional linear trend of undrained shear strength in the spatially variable layer is proposed.The high efficiency of the RFMM algorithm is preserved.The influences of foundation length,trend slope in the spatially variable layer,fluctuation scales,and thickness of the homogenous sand layer on the resulting bearing capacity evaluations are analysed.Moreover,for selected cases,verification of the RFMM based assessment obtained using random finite difference method(RFDM)based on 3 D analysis is provided.Two types of analyses are performed using RFDM based on associated and non-associated flow rules.For associated flow rule which corresponds to RFMM,the RFMM is conservative and efficient and thus it seems preferable.However,if RFDM employs non-associated flow rule(much lower dilation angle for sand layer),the efficient RFMM is no longer conservative.For this situation,a combined approach that improves the efficiency of the numerical method is suggested.展开更多
Numerical wave tanks are widely-acknowledged tools in studying waves and wave-structure interactions. They can generate waves under realistic scales and offers more information on the fluid field. However, most numeri...Numerical wave tanks are widely-acknowledged tools in studying waves and wave-structure interactions. They can generate waves under realistic scales and offers more information on the fluid field. However, most numerical wave tanks suffer from issues known as the numerical dissipation and numerical dispersion. The former causes wave energy to be slowly dissipated and the latter shifts wave frequencies during wave propagation. This paper proposes a simple method of depressing numerical dissipation effects on the basis of solving Euler equations using the finite difference method(FDM). The wave propagation solutions are solved analytically taking into account the influence of the damping terms. The main idea of the method is to append a source term to the momentum equation, whose strength is determined by how strong the numerical damping effect is. The method is verified by successfully depressing numerical effects during the simulation of regular linear waves, Stokes waves and irregular waves. By applying the method, wave energy is able to be close to its initial value after long distance of travel.展开更多
Surface subsidence induced by underground mining is a typical serious geohazard.Numerical approaches such as the discrete element method(DEM)and finite difference method(FDM)have been widely used to model and analyze ...Surface subsidence induced by underground mining is a typical serious geohazard.Numerical approaches such as the discrete element method(DEM)and finite difference method(FDM)have been widely used to model and analyze mining-induced surface subsidence.However,the DEM is typically computationally expensive,and is not capable of analyzing large-scale problems,while the mesh distortion may occur in the FDM modeling of largely deformed surface subsidence.To address the above problems,this paper presents a geometrically and locally adaptive remeshing method for the FDM modeling of largely deformed surface subsidence induced by underground mining.The essential ideas behind the proposed method are as follows:(i)Geometrical features of elements(i.e.the mesh quality),rather than the calculation errors,are employed as the indicator for determining whether to conduct the remeshing;and(ii)Distorted meshes with multiple attributes,rather than those with only a single attribute,are locally regenerated.In the proposed method,the distorted meshes are first adaptively determined based on the mesh quality,and then removed from the original mesh model.The tetrahedral mesh in the distorted area is first regenerated,and then the physical field variables of old mesh are transferred to the new mesh.The numerical calculation process recovers when finishing the regeneration and transformation.To verify the effectiveness of the proposed method,the surface deformation of the Yanqianshan iron mine,Liaoning Province,China,is numerically investigated by utilizing the proposed method,and compared with the numerical results of the DEM modeling.Moreover,the proposed method is applied to predicting the surface subsidence in Anjialing No.1 Underground Mine,Shanxi Province,China.展开更多
文摘In this paper, frequencies of electromagnetic wave in a conductive wire are investigated theoretically. The conductive wire has specific variable material properties along the length of itself. Furthermore, material properties varying along the length of the wire are determined according to a specific mathematical function. In addition, the central finite difference method is applied to the Maxwell equations. The accuracy of the mode 1 frequency parameter is obtained to be 0.06%. This result can be obtained by assuming the number of conductive wire nodes 20. The obtained results show a very good agreement with the exact solution results.
基金National Natural Science Foundation of China under Grant Nos.51978213 and 51778190the National Key Research and Development Program of China under Grant Nos.2017YFC0703605 and 2016YFC0701106。
文摘For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study proposes to investigate the stability and accuracy of the central difference method(CDM)for RTDST considering the specimen mass participation coefficient.First,the theory of the CDM for RTDST is presented.Next,the stability and accuracy of the CDM for RTDST considering the specimen mass participation coefficient are investigated.Finally,numerical simulations and experimental tests are conducted for verifying the effectiveness of the method.The study indicates that the stability of the algorithm is affected by the mass participation coefficient of the specimen,and the stability limit first increases and then decreases as the mass participation coefficient increases.In most cases,the mass participation coefficient will increase the stability limit of the algorithm,but in specific circumstances,the algorithm may lose its stability.The stability and accuracy of the CDM considering the mass participation coefficient are verified by numerical simulations and experimental tests on a three-story frame structure with a tuned liquid damper.
基金supported by the Key Laboratory of Road Construction Technology and Equipment(Chang’an University,No.300102253502)the Natural Science Foundation of Shandong Province of China(GrantNo.ZR2022YQ06)the Development Plan of Youth Innovation Team in Colleges and Universities of Shandong Province(Grant No.2022KJ140).
文摘In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolson scheme.Following temporal discretization,the generalized finite difference method(GFDM)with supplementary nodes is utilized to address the nonlinear boundary value problems at each time node.These supplementary nodes are distributed along the boundary to match the number of boundary nodes.By incorporating supplementary nodes,the resulting nonlinear algebraic equations can effectively satisfy the governing equation and boundary conditions of the EFK equation.To demonstrate the efficacy of our approach,we present three numerical examples showcasing its performance in solving this nonlinear problem.
基金supported by the NSF under Grant DMS-2208391sponsored by the NSF under Grant DMS-1753581.
文摘This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints.
文摘In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order accuracy, while the exponential-sum-approximation (ESA) is used to approximate the variable-order Caputo fractional derivative in the temporal direction, and a novel spatial sixth-order hybrid ESA-CCD method is implemented successfully. Finally, the accuracy of the proposed method is verified by numerical experiments.
基金supported by the Natural Science Foundation of China(Nos.41404057,41674077 and 411640034)the Nuclear Energy Development Project of China,and the‘555’Project of Gan Po Excellent People
文摘To speed up three-dimensional (3D) DC resistivity modeling, we present a new multigrid method, the aggregation-based algebraic multigrid method (AGMG). We first discretize the differential equation of the secondary potential field with mixed boundary conditions by using a seven-point finite-difference method to obtain a large sparse system of linear equations. Then, we introduce the theory behind the pairwise aggregation algorithms for AGMG and use the conjugate-gradient method with the V-cycle AGMG preconditioner (AGMG-CG) to solve the linear equations. We use typical geoelectrical models to test the proposed AGMG-CG method and compare the results with analytical solutions and the 3DDCXH algorithm for 3D DC modeling (3DDCXH). In addition, we apply the AGMG-CG method to different grid sizes and geoelectrical models and compare it to different iterative methods, such as ILU-BICGSTAB, ILU-GCR, and SSOR-CG. The AGMG-CG method yields nearly linearly decreasing errors, whereas the number of iterations increases slowly with increasing grid size. The AGMG-CG method is precise and converges fast, and thus can improve the computational efficiency in forward modeling of three-dimensional DC resistivity.
基金Project (50975263) supported by the National Natural Science Foundation of ChinaProject (2010081015) supported by International Cooperation Project of Shanxi Province, China+1 种基金 Project (2010-78) supported by the Scholarship Council in Shanxi province, ChinaProject (2010420120005) supported by Doctoral Fund of Ministry of Education of China
文摘A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions according to Reynolds number.In the far-wall region,the thermal melt flow was calculated as Newtonian flow.In the near-wall region,the thermal melt flow was calculated as non-Newtonian flow.It was proved that the new algorithm based on the projection method with the implicit technique was correct through nonparametric statistics method and experiment.The simulation results show that the new algorithm based on the projection method with the implicit technique calculates more quickly than the solution algorithm-volume of fluid method using the explicit difference method.
基金The National Natural Science Foundation of China(No50475073,50775036)the High Technology Research Program of Jiangsu Province(NoBG2006035)
文摘An improved finite difference method (FDM)is described to solve existing problems such as low efficiency and poor convergence performance in the traditional method adopted to derive the pressure distribution of aerostatic bearings. A detailed theoretical analysis of the pressure distribution of the orifice-compensated aerostatic journal bearing is presented. The nonlinear dimensionless Reynolds equation of the aerostatic journal bearing is solved by the finite difference method. Based on the principle of flow equilibrium, a new iterative algorithm named the variable step size successive approximation method is presented to adjust the pressure at the orifice in the iterative process and enhance the efficiency and convergence performance of the algorithm. A general program is developed to analyze the pressure distribution of the aerostatic journal bearing by Matlab tool. The results show that the improved finite difference method is highly effective, reliable, stable, and convergent. Even when very thin gas film thicknesses (less than 2 Win)are considered, the improved calculation method still yields a result and converges fast.
基金supported by the National Natural Science Foundation of China (No.50805056)New Century Excellent Talents in University (No.NCET-09-0396)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education (2009)
文摘Thermal stress simulation can provide a scientific reference to eliminate defects such as crack,residual stress centralization and deformation etc.,caused by thermal stress during casting solidification.To study the thermal stress distribution during casting process,a unilateral thermal-stress coupling model was employed to simulate 3D casting stress using Finite Difference Method(FDM),namely all the traditional thermal-elastic-plastic equations are numerically and differentially discrete.A FDM/FDM numerical simulation system was developed to analyze temperature and stress fields during casting solidification process.Two practical verifications were carried out,and the results from simulation basically coincided with practical cases.The results indicated that the FDM/FDM stress simulation system can be used to simulate the formation of residual stress,and to predict the occurrence of hot tearing.Because heat transfer and stress analysis are all based on FDM,they can use the same FD model,which can avoid the matching process between different models,and hence reduce temperature-load transferring errors.This approach makes the simulation of fluid flow,heat transfer and stress analysis unify into one single model.
基金Projects(51308273,41372307,41272326) supported by the National Natural Science Foundation of ChinaProjects(2010(A)06-b) supported by Science and Technology Fund of Yunan Provincial Communication Department,China
文摘Based on some assumptions, the dynamic analysis model of anchorage system is established. The dynamic governing equation is expressed as finite difference format and programmed by using MATLAB language. Compared with theoretical method, the finite difference method has been verified to be feasible by a case study. It is found that under seismic loading, the dynamic response of anchorage system is synchronously fluctuated with the seismic vibration. The change of displacement amplitude of material points is slight, and comparatively speaking, the displacement amplitude of the outside point is a little larger than that of the inside point, which shows amplification effect of surface. While the axial force amplitude transforms considerably from the inside to the outside. It increases first and reaches the peak value in the intersection between the anchoring section and free section, then decreases slowly in the free section. When considering damping effect of anchorage system, the finite difference method can reflect the time attenuation characteristic better, and the calculating result would be safer and more reasonable than the dynamic steady-state theoretical method. What is more, the finite difference method can be applied to the dynamic response analysis of harmonic and seismic random vibration for all kinds of anchor, and hence has a broad application prospect.
文摘An explicit finite element-finite difference method for analyzing the effects of two-dimensional visco-elastic localtopography on earthquake ground motion is prOPosed in this paper. In the method, at first, the finite elementdiscrete model is formed by using the artificial boundary and finite element method, and the dynamic equationsof local nodes in the discrete model are obtained according to the theory of the special finite element method similar to the finite difference method, and then the explicit step-by-step integration formulas are presented by usingthe explicit difference method for solving the visco-elastic dynamic equation and Generalized Multi-transmittingBoundary. The method has the advantages of saving computing time and computer memory space, and it is suitable for any case of topography and has high computing accuracy and good computing stability.
基金supported by the National Natural Science Foundation of China(Nos.11171193 and11371229)the Natural Science Foundation of Shandong Province(No.ZR2014AM033)the Science and Technology Development Project of Shandong Province(No.2012GGB01198)
文摘An implicit finite difference method is developed for a one-dimensional frac- tional percolation equation (FPE) with the Dirichlet and fractional boundary conditions. The stability and convergence are discussed for two special cases, i.e., a continued seep- age flow with a monotone percolation coefficient and a seepage flow with the fractional Neumann boundary condition. The accuracy and efficiency of the method are checked with two numerical examples.
基金supported by the National Natural Science Foundation of China (Grants 11571223, 51404160)Shanxi Province Science Foundation for Youths (Grant 2014021025-1)
文摘This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-dimensional potential problem can be transformed into a series of two-dimensional problems. For these two-dimensional problems, the improved moving least-squares (IMLS) approximation is applied to construct the shape function, which uses an orthogonal function system with a weight function as the basis functions. The Galerkin weak form is applied to obtain a discretized system equation, and the penalty method is employed to impose the essential boundary condition. The finite difference method is selected in the splitting direction. For the purposes of demonstration, some selected numerical examples are solved using the DSEFG method. The convergence study and error analysis of the DSEFG method are presented. The numerical examples show that the DSEFG method has greater computational precision and computational efficiency than the IEFG method.
基金supported by the Yunnan Provincial Applied Basic Research Program of China(No. KKSY201207019)
文摘A three-dimensional (3D) predictor-corrector finite difference method for standing wave is developed. It is applied to solve the 3D nonlinear potential flow equa- tions with a free surface. The 3D irregular tank is mapped onto a fixed cubic tank through the proper coordinate transform schemes. The cubic tank is distributed by the staggered meshgrid, and the staggered meshgrid is used to denote the variables of the flow field. The predictor-corrector finite difference method is given to develop the difference equa- tions of the dynamic boundary equation and kinematic boundary equation. Experimental results show that, using the finite difference method of the predictor-corrector scheme, the numerical solutions agree well with the published results. The wave profiles of the standing wave with different amplitudes and wave lengths are studied. The numerical solutions are also analyzed and presented graphically.
基金the financial support provided by Zhengzhou 1125 Talents Gathering Project (2018)the Doctor startup fund of Henan Agricultural University (30500431)
文摘Polysaccharides are the important biologically active components found in the peel of Dioscorea opposita Thunb.(DTTP).The influences of 4 extraction methods,namely hot water extraction(W),acidic extraction(HA),hot-compressed water extraction(HCW)and enzyme-assisted extraction(EAE),on the yields,physicochemical properties,hypoglycemic and antioxidant activities of polysaccharides from DTTP were studied and compared.Among these DTTP polysaccharides,DTTP-HA was outstanding in several respects.DTTP-HA was the most water soluble;it had the highest total carbohydrate content(85.08%),the highest uronic acid(13.20%)and the highest thermal stability.DTTP-HA and DTTP-W possessed a triple-helix structure.These 4 kinds of polysaccharides have the same types of monosaccharides,but in different molar percentages.Extraction method had a significant impact on the microstructures of the extracted polysaccharides.DTT-HA exhibited irregular structure with many holes.Among the 4 extracted methods,the DTTP-HA and DTTP-W initially exhibited higher hypoglycemic and antioxidant activities.The better bioactivities of DTTP-HA may be related to the above factors.The findings indicated that acid extraction is an effective method to extract polysaccharides with high biological activities from DTTP.
文摘The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of curl interface underground or “v” figure complex model, it is difficult to realize. So it is important to forward the complex geoelectricity model. This paper takes two Maxwell’s vorticity equations as departure point, makes use of the principles of Yee’s space grid model theory and the basic principle finite difference time domain method, and deduces a GPR forward system of equation of two dimensional spaces. The Mur super absorbed boundary condition is adopted to solve the super strong reflection on the interceptive boundary when there is the forward simulation. And a self-made program is used to process forward simulation to two typical geoelectricity model.
基金Project(Z110803)supported by the State Key Laboratory of Geomechanics and Geotechnical Engineering,ChinaProject(2008AA062303)supported by the National High Technology Research and Development Program of China
文摘A fast explicit finite difference method (FEFDM),derived from the differential equations of one-dimensional steady pipe flow,was presented for calculation of wellhead injection pressure.Recalculation with a traditional numerical method of the same equations corroborates well the reliability and rate of FEFDM.Moreover,a flow rate estimate method was developed for the project whose injection rate has not been clearly determined.A wellhead pressure regime determined by this method was successfully applied to the trial injection operations in Shihezi formation of Shenhua CCS Project,which is a good practice verification of FEFDM.At last,this method was used to evaluate the effect of friction and acceleration terms on the flow equation on the wellhead pressure.The result shows that for deep wellbore,the friction term can be omitted when flow rate is low and in a wide range of velocity the acceleration term can always be deleted.It is also shown that with flow rate increasing,the friction term can no longer be neglected.
文摘A bearing capacity evaluation for the surface strip foundation on a working platform modelled on a twolayered substrate is considered in the study.The upper layer is assumed as man-made and wellcontrolled and thus non-variable.The lower layer modelling natural cohesive soil is subjected to spatial variability of undrained shear strength.The random failure mechanism method(RFMM)is used to evaluate the bearing capacity.This approach employs a kinematic assessment of the critical load and incorporates the averaging of three-dimensional(3 D)random field along dissipation surfaces that result from the failure mechanism geometry.A novel version of the approach considering an additional linear trend of undrained shear strength in the spatially variable layer is proposed.The high efficiency of the RFMM algorithm is preserved.The influences of foundation length,trend slope in the spatially variable layer,fluctuation scales,and thickness of the homogenous sand layer on the resulting bearing capacity evaluations are analysed.Moreover,for selected cases,verification of the RFMM based assessment obtained using random finite difference method(RFDM)based on 3 D analysis is provided.Two types of analyses are performed using RFDM based on associated and non-associated flow rules.For associated flow rule which corresponds to RFMM,the RFMM is conservative and efficient and thus it seems preferable.However,if RFDM employs non-associated flow rule(much lower dilation angle for sand layer),the efficient RFMM is no longer conservative.For this situation,a combined approach that improves the efficiency of the numerical method is suggested.
基金The National Natural Science Foundation of China under contract No.51609101 and 51909103the Natural Science Foundation of Fujian Province of China under contract Nos 2017J01701,2017J05085 and 2018J05090the Outstanding Young University Scientific Research Talents Cultivation Plan of Fujian Province of China
文摘Numerical wave tanks are widely-acknowledged tools in studying waves and wave-structure interactions. They can generate waves under realistic scales and offers more information on the fluid field. However, most numerical wave tanks suffer from issues known as the numerical dissipation and numerical dispersion. The former causes wave energy to be slowly dissipated and the latter shifts wave frequencies during wave propagation. This paper proposes a simple method of depressing numerical dissipation effects on the basis of solving Euler equations using the finite difference method(FDM). The wave propagation solutions are solved analytically taking into account the influence of the damping terms. The main idea of the method is to append a source term to the momentum equation, whose strength is determined by how strong the numerical damping effect is. The method is verified by successfully depressing numerical effects during the simulation of regular linear waves, Stokes waves and irregular waves. By applying the method, wave energy is able to be close to its initial value after long distance of travel.
基金supported by the National Natural Science Foundation of China(Grant Nos.11602235 and 41772326)the Fundamental Research Funds for the Central Universities of China(Grant No.2652018091)。
文摘Surface subsidence induced by underground mining is a typical serious geohazard.Numerical approaches such as the discrete element method(DEM)and finite difference method(FDM)have been widely used to model and analyze mining-induced surface subsidence.However,the DEM is typically computationally expensive,and is not capable of analyzing large-scale problems,while the mesh distortion may occur in the FDM modeling of largely deformed surface subsidence.To address the above problems,this paper presents a geometrically and locally adaptive remeshing method for the FDM modeling of largely deformed surface subsidence induced by underground mining.The essential ideas behind the proposed method are as follows:(i)Geometrical features of elements(i.e.the mesh quality),rather than the calculation errors,are employed as the indicator for determining whether to conduct the remeshing;and(ii)Distorted meshes with multiple attributes,rather than those with only a single attribute,are locally regenerated.In the proposed method,the distorted meshes are first adaptively determined based on the mesh quality,and then removed from the original mesh model.The tetrahedral mesh in the distorted area is first regenerated,and then the physical field variables of old mesh are transferred to the new mesh.The numerical calculation process recovers when finishing the regeneration and transformation.To verify the effectiveness of the proposed method,the surface deformation of the Yanqianshan iron mine,Liaoning Province,China,is numerically investigated by utilizing the proposed method,and compared with the numerical results of the DEM modeling.Moreover,the proposed method is applied to predicting the surface subsidence in Anjialing No.1 Underground Mine,Shanxi Province,China.