期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Plastic Deformation of Nano-TiO_2 Ceramics Prepared by Different Methods 被引量:1
1
作者 Zuolin CUI(Research Center of Nanostructure Materials, Qingdao Institute of Chemical Technology, 266042 Qingdao, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1999年第1期71-74,共4页
The comparative study of the tensile plastic deformation of nano(n)-TiO2 ceramic prepared byphysical gas condensation (P) and chemical hydrolysis precipitation (C) methods was conductedby a gas pressure forming techni... The comparative study of the tensile plastic deformation of nano(n)-TiO2 ceramic prepared byphysical gas condensation (P) and chemical hydrolysis precipitation (C) methods was conductedby a gas pressure forming technique at 750~800℃. The results show that n-TiO2 (P) possessesexcellent property of tensile pIastic deformation comparing with n-TiO2(C). The reason for thisis attributed to the surface cleanness and soft agglomeration of n-TiO2 (P) particfe prepared inreIatively cIean vacuum condition. 展开更多
关键词 TiO Nano Plastic Deformation of Nano-TiO2 Ceramics Prepared by different Methods
下载PDF
Upper crustal deformation characteristics in the northeastern Tibetan Plateau and its adjacent areas revealed by GNSS and anisotropy data 被引量:3
2
作者 Shuyu Li Yuan Gao Honglin Jin 《Earthquake Science》 2023年第4期297-308,共12页
The northeastern part of the Tibetan Plateau is a region where different tectonic blocks collide and intersect,and large earthquakes are frequent.Global Navigation Satellite System(GNSS)observations show that tectonic... The northeastern part of the Tibetan Plateau is a region where different tectonic blocks collide and intersect,and large earthquakes are frequent.Global Navigation Satellite System(GNSS)observations show that tectonic deformation in this region is strong and manifests as non-uniform deformation associated with tectonic features.S-wave splitting studies of near-field seismic data show that seismic anisotropy parameters can also reveal the upper crustal medium deformation beneath the reporting station.In this paper,we summarize the surface deformation from GNSS observations and crustal deformation from seismic anisotropy data in the northeastern Tibetan Plateau.By comparing the principal compressive strain direction with the fast S-wave polarization direction of near-field S-wave splitting,we analyzed deformation and its differences in surface and upper crustal media in the northeastern Tibetan Plateau and adjacent areas.The principal compressive strain direction derived from GNSS is generally consistent with the polarization direction of fast S-waves,but there are also local tectonic regions with large differences between them,which reflect the different deformation mechanisms of regional upper crustal media.The combination of GNSS and seismic anisotropy data can reveal the depth variation characteristics of crustal deformation and deepen understanding of three-dimensional crustal deformation and the deep dynamical mechanisms underlying it.it. 展开更多
关键词 upper crustal deformation northeastern Tibetan Plateau GNSS seismic anisotropy deformation differences
下载PDF
Simulation of the water level influence on the difference within the water-tube tiltmeter in Shuangyang Lake 被引量:1
3
作者 Chong Yue Chuncheng Tang +5 位作者 Wei Yan Xiaodong Pan Xueme Li Yuwen Tan Zongfeng Zhang Tianlong Yu 《Earthquake Research Advances》 CSCD 2021年第2期33-39,共7页
This article analyzes the relationship between the water level and the water-tube tilting in Shuangyang lake,based on the differential deformation features reflected by the NS and EW components of the water-tube tiltm... This article analyzes the relationship between the water level and the water-tube tilting in Shuangyang lake,based on the differential deformation features reflected by the NS and EW components of the water-tube tiltmeter.The results show a good spatiotemporal consistency between the variation of water level and the NS tilt component,which is considered to be affected by the magnitude and duration of the water level variation in Shuangyang Lake.The article uses Landsat remote sensing image data to extract the water boundary of Shuan-gyang Lake,and takes advantage of the finite element numerical simulation method to build three-dimensional models for different geological structural conditions of the Shuangyang seismostation.The simulation results show that when the underground medium is granite,the effect of water level variation on the vertical displacement of the surface is non-directional.With a 50-m soil layer in Model 2,the simulated NS tilt variation is equivalent to the actual observed water-tube tiltmeter NS component when the water level variation is 0.44 m and 0.8m.When the variation of water level reaches 2.0m,the simulation result of the NS component is 79.6 ms,which is slightly larger than the observed result of 60.32 ms.However,the simulation results show that the variation of the EW component is significantly smaller than that of the NS one.Due to the fact that the Shuan-gyang lake is long in the NS direction and short in the EW direction,the existence of the soil layer tends to generate ground deformation along the NS direction in the vicinity of the lake after the increase of water level,thereby resulting in the difference of the ground deformation in the two directions. 展开更多
关键词 Water-tube tiltmeter at shuangyang seismostation Water level of shuangyang lake Finite element method Difference of the ground deformation
下载PDF
Study on the subgrade deformation under high-speed train loading and water–soil interaction
4
作者 Jian Han Guo-Tang Zhao +1 位作者 Xiao-Zhen Sheng Xue-Song Jin 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第2期233-243,共11页
It is important to study the subgrade characteristics of high-speed railways in consideration of the water–soil coupling dynamic problem,especially when high-speed trains operate in rainy regions.This study develops ... It is important to study the subgrade characteristics of high-speed railways in consideration of the water–soil coupling dynamic problem,especially when high-speed trains operate in rainy regions.This study develops a nonlinear water–soil interaction dynamic model of slab track coupling with subgrade under high-speed train loading based on vehicle–track coupling dynamics.By using this model,the basic dynamic characteristics,including water–soil interaction and without water induced by the high-speed train loading,are studied.The main factors-the permeability coefficien and the porosity-influencin the subgrade deformation are investigated.The developed model can characterize the soil dynamic behaviour more realistically,especially when considering the influenc of water-rich soil. 展开更多
关键词 Water–soil interaction High-speed train loading Finite difference method Subgrade deformation Permeability coefficien Porosity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部