The highest occupied molecular orbital(HOMO) energies of fullerenes are found by quantitative first-principles calculations to be raised by negative charging, and the rising rate rank of the fullerenes is C60 >C7...The highest occupied molecular orbital(HOMO) energies of fullerenes are found by quantitative first-principles calculations to be raised by negative charging, and the rising rate rank of the fullerenes is C60 >C70 >C80 >C90>C100 >C180. Then we compare fullerenes with carbon nanotubes(CNTs) and graphene sheets(GSs) and find that the increase of the HOMO energy of a fullerene is much faster than that of CNTs and graphene sheets with the same number of C atoms. The rising rate rank is fullerene>CNT>GS, which holds no matter what the number of C atoms is or which structure the fullerene isomer is. This work paves a new path for developing all-carbon devices with low-dimensional carbon nanomaterials as different functional elements.展开更多
Polarization coding is a specific encoding method by using the polarization state of optical signal carrying coded in- formation. It focuses on nonlinear effects, polarization mode dispersion and other issues in high-...Polarization coding is a specific encoding method by using the polarization state of optical signal carrying coded in- formation. It focuses on nonlinear effects, polarization mode dispersion and other issues in high-speed fiber-optic communi- cations. This paper presents a measurement method for polarization state based on elastic-optic modulator. This method not only retains the original advantages of elastic-optic modulator for polarization measurement, but also overcomes the defects of existing methods including high modulation frequency and invalid collection by using array detector. Matlab simulation and experimental verification scheme are given. The feasibility of this method is verified through theoretical analysis, and simulation and experimental results are carried out. The error analysis of the measurement results shows that the method can meet the measurement requirements and provide conditions for using the polarization encoding in high-speed communication.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11374174,51390471,51527803,and 51701143the National Basic Research Program of China under Grant No 2015CB654902+4 种基金the National Key Research and Development Program under Grant No 2016YFB0700402the Foundation for the Author of National Excellent Doctoral Dissertation under Grant No 201141the National Program for Thousand Young Talents of China,the Tianjin Municipal Education Commissionthe Tianjin Municipal Science and Technology Commissionthe Fundamental Research Fund of Tianjin University of Technology
文摘The highest occupied molecular orbital(HOMO) energies of fullerenes are found by quantitative first-principles calculations to be raised by negative charging, and the rising rate rank of the fullerenes is C60 >C70 >C80 >C90>C100 >C180. Then we compare fullerenes with carbon nanotubes(CNTs) and graphene sheets(GSs) and find that the increase of the HOMO energy of a fullerene is much faster than that of CNTs and graphene sheets with the same number of C atoms. The rising rate rank is fullerene>CNT>GS, which holds no matter what the number of C atoms is or which structure the fullerene isomer is. This work paves a new path for developing all-carbon devices with low-dimensional carbon nanomaterials as different functional elements.
文摘Polarization coding is a specific encoding method by using the polarization state of optical signal carrying coded in- formation. It focuses on nonlinear effects, polarization mode dispersion and other issues in high-speed fiber-optic communi- cations. This paper presents a measurement method for polarization state based on elastic-optic modulator. This method not only retains the original advantages of elastic-optic modulator for polarization measurement, but also overcomes the defects of existing methods including high modulation frequency and invalid collection by using array detector. Matlab simulation and experimental verification scheme are given. The feasibility of this method is verified through theoretical analysis, and simulation and experimental results are carried out. The error analysis of the measurement results shows that the method can meet the measurement requirements and provide conditions for using the polarization encoding in high-speed communication.