Topography, especially altitude, will influence the way, process and characteristics of land cover changes in mountainous area, simultaneously, the vertical difference of land cover changes will affect soil quality an...Topography, especially altitude, will influence the way, process and characteristics of land cover changes in mountainous area, simultaneously, the vertical difference of land cover changes will affect soil quality and regional ecological environment. Therefore, the gradient relationship analysis between land cover changes and altitude is very important for regional sustainability. This study investigated land cover dynamics based on land cover data from a typical mountainous area in the Guizhou-Guangxi karst mountain area, China, in 2000 and 2010, then explored the relationship between altitude and land cover change and analyzed different drivers of land cover change at different altitudes. Our findings are as follows. 1) From 2000 to 2010, the total area of land cover transition was 7167.04 km^2 or 2.8% of the region. The increasing area of build-up land(926.23 km^2) was larger than that of forest(859.38 km^2), suggesting that the urban construction speed was higher than that of reforestation. 2) Intensity of land cover transition in northwestern Guizhou-Guangxi karst mountain area was much larger than that of southeast part and their transition trend was also significantly different, which was consistent with regional population and economy. 3) Human activity was the most dramatic at altitudes between 0–500 m. For 500–1000 m, grassland mainly converted to forest and build-up land. Area of land cover transition was the greatest between 1000–1500 m, while above 1500 m, the transition of grassland was the most obvious. 4) The drivers of land cover change varied. Land cover change was positively correlated with gross domestic product and population density but was inversely related to relief amplitude. There were correlations between land cover change and distance to roads and rivers, and their correlations varied with altitude. By revealing patterns and causes of land cover changes in different altitudes, we hope to understand the vertical dependence of land cover changes, so as to improve land productivity and protect land ecological environment scientifically.展开更多
Changes in glaciers in the Chinese Tianshan Mountains have been analyzed previously. However, most previous studies focused on individual glaciers and/or decentralized glacial basins. Moreover, a majority of these stu...Changes in glaciers in the Chinese Tianshan Mountains have been analyzed previously. However, most previous studies focused on individual glaciers and/or decentralized glacial basins. Moreover, a majority of these studies were published only in Chinese, which limited their usefulness at the international level. With this in mind, the authors reviewed the previous studies to create an overview of glacial changes in the Chinese Tianshan Mountains over the last five decades and discussed the effects of glacial changes on water resources. In response to climate change, glaciers in the Tianshan Mountains are shrinking rapidly and are ca. 20% smaller on average in the past five decades. Overall, the area reduction of glacial basins in the central part of the Chinese Tianshan Mountains is larger than that in the eastern and western parts. The spatial differentiation in glacial changes are caused by both differences in regional climate and in glacial factors. The effects of glacial changes on water resources vary in different river basins due to the differences in glacier distribution, characteristics of glacial change and proportion of the glacier meltwater in river runoff.展开更多
This study describes the spatial and temporal variation of a drought index and makes inferences regarding the environmental factors that influence this variability in the Hengduan Mountains. A drought index is typical...This study describes the spatial and temporal variation of a drought index and makes inferences regarding the environmental factors that influence this variability in the Hengduan Mountains. A drought index is typically used to determine the moisture conditions and the magnitude of water deficiency in a given area. Based on data from 26 meteorological stations over the period 1960-2012, the spatial and temporal variations of the drought index were analyzed using a thin plate smoothing splines method that considered elevation as a covariate. The drought index was estimated based on the potential evapotranspiration(E0) as defined by the Penman Monteith model modified by FAO(1998). The results of the reported analysis showed that the drought index in the Hengduan Mountains has been decreasing since 1960 at a rate of-0.008/a. This represented a progressive shift from the "sub-humid" class, which typified the wider area in the Hengduan Mountains, toward the "humid" class, which appeared in the Hengduan Mountains areas. The drought index was relatively high in the north and low in the south and the variation of the drought index varied with seasons. The drought index showed increasing trends in summer and autumn and it is greater in autumn than in summer, while it showed a decreasing trend in spring and winter. Drought index is inversely proportional to the soil relative humidity and Normalized Difference Vegetation Index(NDVI).展开更多
This study aims to understand the particle size distribution and depositional styles of glacierassociated deposits in the Moxi basin in southwest China. Based on field surveys, 28 samples from glacier-associated depos...This study aims to understand the particle size distribution and depositional styles of glacierassociated deposits in the Moxi basin in southwest China. Based on field surveys, 28 samples from glacier-associated deposits(including glacial till,fluvioglacial, debris flow, river and lake deposits)were collected and tested in the laboratory. The results showed that the glacier-associated deposits can be differentiated based on particle gradation,particle size distribution and accumulated percentages. We evaluated the evolution of a former dammed lake in the Moxi basin based on glacierassociated deposits. The results of this study also indicated that the Moxi Platform was not formed by a single depositional process but is composed of both fluvioglacial and debris flow deposits. This research shows that the depositional style analysis is useful in identifying different glacier-associated deposits in high mountain regions. Moreover, the evaluation of the differences in particle sizes of the glacierassociated deposits is useful in reconstructing geohazard events in periglacial regions, and this information can help in identifying and reducing the potential risks associated with geo-hazards.展开更多
基金supported by the National Key Basic Research Program of China (973Program, 2015CB452706)the youth talent team program of the Institute of Mountain Hazards and Environment, CAS (SDSQB-2015-01)+1 种基金the National Natural Science Foundation of China (41401198 and 41571527)the Youth Innovation Promotion Association, CAS(No. 2016332)
文摘Topography, especially altitude, will influence the way, process and characteristics of land cover changes in mountainous area, simultaneously, the vertical difference of land cover changes will affect soil quality and regional ecological environment. Therefore, the gradient relationship analysis between land cover changes and altitude is very important for regional sustainability. This study investigated land cover dynamics based on land cover data from a typical mountainous area in the Guizhou-Guangxi karst mountain area, China, in 2000 and 2010, then explored the relationship between altitude and land cover change and analyzed different drivers of land cover change at different altitudes. Our findings are as follows. 1) From 2000 to 2010, the total area of land cover transition was 7167.04 km^2 or 2.8% of the region. The increasing area of build-up land(926.23 km^2) was larger than that of forest(859.38 km^2), suggesting that the urban construction speed was higher than that of reforestation. 2) Intensity of land cover transition in northwestern Guizhou-Guangxi karst mountain area was much larger than that of southeast part and their transition trend was also significantly different, which was consistent with regional population and economy. 3) Human activity was the most dramatic at altitudes between 0–500 m. For 500–1000 m, grassland mainly converted to forest and build-up land. Area of land cover transition was the greatest between 1000–1500 m, while above 1500 m, the transition of grassland was the most obvious. 4) The drivers of land cover change varied. Land cover change was positively correlated with gross domestic product and population density but was inversely related to relief amplitude. There were correlations between land cover change and distance to roads and rivers, and their correlations varied with altitude. By revealing patterns and causes of land cover changes in different altitudes, we hope to understand the vertical dependence of land cover changes, so as to improve land productivity and protect land ecological environment scientifically.
基金funded by the Funds for Creative Research Groups of China (41121001)the National Basic Research Program (2013CBA01801)+3 种基金the National Natural Science Foundation of China (41301069, 41471058)the State Key Laboratory of Cryospheric Science foundation, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences (SKLCS-ZZ-2012-01-01)West Light Program for Talent Cultivation of the Chinese Academy of Sciencesthe Special Financial Grant from the China Postdoctoral Science Foundation ( 2014T70948)
文摘Changes in glaciers in the Chinese Tianshan Mountains have been analyzed previously. However, most previous studies focused on individual glaciers and/or decentralized glacial basins. Moreover, a majority of these studies were published only in Chinese, which limited their usefulness at the international level. With this in mind, the authors reviewed the previous studies to create an overview of glacial changes in the Chinese Tianshan Mountains over the last five decades and discussed the effects of glacial changes on water resources. In response to climate change, glaciers in the Tianshan Mountains are shrinking rapidly and are ca. 20% smaller on average in the past five decades. Overall, the area reduction of glacial basins in the central part of the Chinese Tianshan Mountains is larger than that in the eastern and western parts. The spatial differentiation in glacial changes are caused by both differences in regional climate and in glacial factors. The effects of glacial changes on water resources vary in different river basins due to the differences in glacier distribution, characteristics of glacial change and proportion of the glacier meltwater in river runoff.
基金support for this research of Chinese Postdoctoral Science Foundation (2016T90961, 2015M570864)Openended fund of State Key Laboratory of Cryosphere Sciences, Chinese Academy of Sciences (SKLCSOP-2014-11)+2 种基金Project of Northwest Normal University (China) Young Teachers Scientific Research Ability Promotion Plan (NWNU-LKQN13-10)Project of National Natural Science Foundation of China (41271133, 41273010, 41361106, 41261104)Project of Major National Research Projects of China (No. 2013CBA01808)
文摘This study describes the spatial and temporal variation of a drought index and makes inferences regarding the environmental factors that influence this variability in the Hengduan Mountains. A drought index is typically used to determine the moisture conditions and the magnitude of water deficiency in a given area. Based on data from 26 meteorological stations over the period 1960-2012, the spatial and temporal variations of the drought index were analyzed using a thin plate smoothing splines method that considered elevation as a covariate. The drought index was estimated based on the potential evapotranspiration(E0) as defined by the Penman Monteith model modified by FAO(1998). The results of the reported analysis showed that the drought index in the Hengduan Mountains has been decreasing since 1960 at a rate of-0.008/a. This represented a progressive shift from the "sub-humid" class, which typified the wider area in the Hengduan Mountains, toward the "humid" class, which appeared in the Hengduan Mountains areas. The drought index was relatively high in the north and low in the south and the variation of the drought index varied with seasons. The drought index showed increasing trends in summer and autumn and it is greater in autumn than in summer, while it showed a decreasing trend in spring and winter. Drought index is inversely proportional to the soil relative humidity and Normalized Difference Vegetation Index(NDVI).
基金funded by The China Geological Survey (Grant No. 12120113010200)Ministry of Science and Technology of the People’s Republic of China (Grant No. 2011FY110100-5)The National Natural Science Foundation of China (Grant No. 41101086)
文摘This study aims to understand the particle size distribution and depositional styles of glacierassociated deposits in the Moxi basin in southwest China. Based on field surveys, 28 samples from glacier-associated deposits(including glacial till,fluvioglacial, debris flow, river and lake deposits)were collected and tested in the laboratory. The results showed that the glacier-associated deposits can be differentiated based on particle gradation,particle size distribution and accumulated percentages. We evaluated the evolution of a former dammed lake in the Moxi basin based on glacierassociated deposits. The results of this study also indicated that the Moxi Platform was not formed by a single depositional process but is composed of both fluvioglacial and debris flow deposits. This research shows that the depositional style analysis is useful in identifying different glacier-associated deposits in high mountain regions. Moreover, the evaluation of the differences in particle sizes of the glacierassociated deposits is useful in reconstructing geohazard events in periglacial regions, and this information can help in identifying and reducing the potential risks associated with geo-hazards.