The shear strength deterioration of bedding planes between different rock types induced by cyclic loading is vital to reasonably evaluate the stability of soft and hard interbedded bedding rock slopes under earthquake...The shear strength deterioration of bedding planes between different rock types induced by cyclic loading is vital to reasonably evaluate the stability of soft and hard interbedded bedding rock slopes under earthquake;however,rare work has been devoted to this subject due to lack of attention.In this study,experimental investigations on shear strength weakening of discontinuities with different joint wall material(DDJM)under cyclic loading were conducted by taking the interface between siltstone and mudstone in the Shaba slope of Yunnan Province,China as research objects.A total of 99 pairs of similar material samples of DDJM(81 pairs)and discontinuities with identical joint wall material(DIJM)(18 pairs)were fabricated by inserting plates,engraved with typical surface morphology obtained by performing three-dimensional laser scanning on natural DDJMs sampled from field,into mold boxes.Cyclic shear tests were conducted on these samples to study their shear strength changes with the cyclic number considering the effects of normal stress,joint surface morphology,shear displacement amplitude and shear rate.The results indicate that the shear stress vs.shear displacement curves under each shear cycle and the peak shear strength vs.cyclic number curves of the studied DDJMs are between those of DIJMs with siltstone and mudstone,while closer to those of DIJMs with mudstone.The peak shear strengths of DDJMs exhibit an initial rapid decline followed by a gradual decrease with the cyclic number and the decrease rate varies from 6%to 55.9%for samples with varied surface morphology under different testing conditions.The normal stress,joint surface morphology,shear displacement amplitude and shear rate collectively influence the shear strength deterioration of DDJM under cyclic shear loading,with the degree of influence being greater for larger normal stress,rougher surface morphology,larger shear displacement amplitude and faster shear rate.展开更多
The CO_2 adsorption on CaO(001) surface at different coverages from 1/9 monolayer(ML) to 1 ML has been investigated using density functional theory calculations. With the analysis of the most stable adsorption structu...The CO_2 adsorption on CaO(001) surface at different coverages from 1/9 monolayer(ML) to 1 ML has been investigated using density functional theory calculations. With the analysis of the most stable adsorption structures at different coverages, the mechanism of CaO(001)surface carbonating into CaCO_3 has been explored. At low coverages(≤1/3 ML), CO_2 molecule prefers sitting in parallel pattern on the CaO(001) surface, while the structure of the CaO(001)surface remains unchanged. At medium coverage(4/9 ~ 2/3 ML), the repulsive interactions between oxygen atoms of CO_2 become stronger, and the calcium carbonation structure appears on the CaO(001) surface. At high coverage( ≥ 7/9 ML), the structure of the CaO(001) surface is deeply damaged, and a few CO_2 molecules have penetrated into the surface and bound to the O atom of the second layer(sub-surface), eventually forming the layered structure of CaCO_3.Additionally, herein has discussed the simulation of HREELS and thermodynamical stability of these structures at different coverages.展开更多
Surface mass anomalies estimated by mass concentration(mascon)approach using Gravity Recovery and Climate Experiment(GRACE)observations with regularization constraints generally present higher spatial resolution than ...Surface mass anomalies estimated by mass concentration(mascon)approach using Gravity Recovery and Climate Experiment(GRACE)observations with regularization constraints generally present higher spatial resolution than the spheric harmonic(SH)solutions.To analyze the influence of different types of constraints on the estimation of mascon solutions,we carried out a closed-loop simulation experiment to estimate surface mass anomalies over South America based on simulated GRACE intersatellite geopotential differences.Tikhonov regularization with spatial constraint(SC),uniform weighting constraint(UWC),and a prior information constraint(APC)were employed to stabilize the mascon solutions,and the corresponding optimal regularization parameters were determined based on the minimum residual root-mean-square(RMS)criterion.The results show that mascon solutions estimated under different types of constraints are consistent and equivalent when the optimal regularization parameters are selected.The spatial distributions and main characteristics of regional surface mass anomalies estimated by the three types of constraints agree well,and the values of residual RMS with different constraints are very close.But due to the smoothing effect of regularization,the signal strength of mascon solutions is a bit weaker than that of original true signal,especially in the regions with strong signals.In addition,due to the ill-conditioned problem is more serious for higher grid resolution,the relative contribution of the three types of constraints to the final mascon solutions would be stronger.The results show that the averages of relative contribution percentages of these constraints for 2°×2° mascon grids are 80%-90%,while the corresponding values for 4°×4° mascon grids are 30%-60%.However,based on the minimum residual RMS criterion,the accuracy of estimation results is not affected by the type of constraints and their relative contribution to the final mascon solutions.展开更多
Based on observational data of arid,semi-arid and semi-humid areas in Northwest China,the characteristics of surface-wa ter heat transfer and land-surface parameters were compared and analyzed.The results show that th...Based on observational data of arid,semi-arid and semi-humid areas in Northwest China,the characteristics of surface-wa ter heat transfer and land-surface parameters were compared and analyzed.The results show that the annual mean net radi ation was largest in the semi-humid area,followed by the semi-arid area,and then the arid area:77.72 W/m^2,67.73 W/m^2,and 55.47 W/m^2,respectively.The annual mean sensible heat flux was largest in the arid area,followed by the semi-arid and semi-humid areas,while latent heat flux showed the reverse.The annual mean sensible heat flux in arid,semi-arid,and semi-humid areas was 85.7 W/m^2,37.59 W/m^2,and 27.55 W/m^2,respectively.The annual mean latent heat flux was 0 W/m^2,26.08 W/m^2,and 51.19 W/m2,respectively.The annual mean soil-heat flux at the 5-cm soil layer in arid,semi-arid,and semi-humid areas was 1.00 W/m^2,0.82 W/m^2,and 1.25 W/m^2,respectively.The annual mean surface albedo was larg est in the arid area,followed by the semi-humid area;and the smallest was in the semi-arid area:0.24,0.21,and 0.18,re spectively.The annual mean Bowen ratio in the semi-arid area was about 2.06,and that in semi-humid area was about 0.03.The annual mean soil thermal conductivity in the arid,semi-arid,and semi-humid areas was 0.26 W/(m k),1.15 W/(m k),and 1.20 W/(m k),respectively.展开更多
Finite-difference(FD) methods are widely used in seismic forward modeling owing to their computational efficiency but are not readily applicable to irregular topographies. Thus, several FD methods based on the transfo...Finite-difference(FD) methods are widely used in seismic forward modeling owing to their computational efficiency but are not readily applicable to irregular topographies. Thus, several FD methods based on the transformation to curvilinear coordinates using body-fitted grids have been proposed, e.g., stand staggered grid(SSG) with interpolation, nonstaggered grid, rotated staggered grid(RSG), and fully staggered. The FD based on the RSG is somewhat superior to others because it satisfies the spatial distribution of the wave equation without additional memory and computational requirements; furthermore, it is simpler to implement. We use the RSG FD method to transform the firstorder stress–velocity equation in the curvilinear coordinates system and introduce the highprecision adaptive, unilateral mimetic finite-difference(UMFD) method to process the freeboundary conditions of an irregular surface. The numerical results suggest that the precision of the solution is higher than that of the vacuum formalism. When the minimum wavelength is low, UMFD avoids the surface wave dispersion. We compare FD methods based on RSG, SEM, and nonstaggered grid and infer that all simulation results are consistent but the computational efficiency of the RSG FD method is higher than the rest.展开更多
Disparity in the root morphology of six rice(Oryza sativa L.) genotypes varying in potassium(K) efficiency was studied with three K levels:5 mg/L(low),10 mg/L(moderate) and 40 mg/L(adequate) in hydroponic culture. Mor...Disparity in the root morphology of six rice(Oryza sativa L.) genotypes varying in potassium(K) efficiency was studied with three K levels:5 mg/L(low),10 mg/L(moderate) and 40 mg/L(adequate) in hydroponic culture. Morphological parameters included root length,surface area,volume and count of lateral roots,as well as fine(diameter<0.2 mm) and thick(diameter>0.2 mm) roots. The results indicate that the root growth of all genotypes was reduced under low K,but moderate K deficiency increased the root length of the efficient genotypes. At deficient and moderate K levels,all the efficient rice genotypes developed more fine roots(diameter<0.2 mm) than the inefficient ones. Both fine root count and root surface area were found to be the best parameters to portray K stress in rice. In accordance with the root morphology,higher K concentrations were noted in shoots of the efficient genotypes when grown at moderate and deficient K levels,indicating that root morphology parameters are involved in root uptake for K and in the translocation of K up to shoots. K deficiency affected not only the root morphology,but also the root ultra-structure. The roots of high-efficient genotypes had stronger tolerance to K deficient stress for root membrane damage,and could maintain the developed root architecture to adapt to the low K growth medium.展开更多
Soil temperatures at different depths down the soil profile are important agro-meteorological indicators which are necessary for ecological modeling and precision agricultural activities. In this paper, using time ser...Soil temperatures at different depths down the soil profile are important agro-meteorological indicators which are necessary for ecological modeling and precision agricultural activities. In this paper, using time series of soil temperature(ST) measured at different depths(0, 5, 10, 20, and 40 cm) at agro-meteorological stations in northern China as reference data, ST was estimated from land surface temperature(LST) and normalized difference vegetation index(NDVI) derived from AQUA/TERRA MODIS data, and solar declination(Ds) in univariate and multivariate linear regression models. Results showed that when daytime LST is used as predictor, the coefficient of determination(R^2) values decrease from the 0 cm layer to the 40 cm layer. Additionally, with the use of nighttime LST as predictor, the R^2 values were relatively higher at 5, 10 and 15 cm depths than those at 0, 20 and 40 cm depths. It is further observed that the multiple linear regression models for soil temperature estimation outperform the univariate linear regression models based on the root mean squared errors(RMSEs) and R^2. These results have demonstrated the potential of MODIS data in tandem with the Ds parameter for soil temperature estimation at the upper layers of the soil profile where plant roots grow in. To the best of our knowledge, this is the first attempt at the synergistic use of LST, NDVI and Ds for soil temperature estimation at different depths of the upper layers of the soil profile, representing a significant contribution to soil remote sensing.展开更多
Laser spot thermography is a novel technique for the detection of surface cracks with a laser to heat sample locally and with an IR camera to record the surface temperature distribution. Common methods to characterize...Laser spot thermography is a novel technique for the detection of surface cracks with a laser to heat sample locally and with an IR camera to record the surface temperature distribution. Common methods to characterize cracks are only suitable for the situation that the laser scanning path is vertical to the crack. But due to the randomness of cracks,when the scanning path is parallel to the crack,surface cracks cannot be detected by these methods. To tackle this problem,a method is presented which is suitable for the situation that the scanning path is parallel to crack. The main idea is to evaluate the crack-caused asymmetries of the surface temperature distribution. The effect of temperature gradient and the maximum scanning interval are analyzed by a 2D simulation. A new crack imaging technique is presented that is based on delayed temperature difference at symmetric points to characterize the crack in the thermal image. Compared well with those obtained by the spatial first derivative method,experimental results are shown to efficiently prove this method.展开更多
Surface Laplacian map provides a better spatial resolution than surface potential distribution. Different order finite difference approximations are deduced and compared by simulations on a plane in this paper. The re...Surface Laplacian map provides a better spatial resolution than surface potential distribution. Different order finite difference approximations are deduced and compared by simulations on a plane in this paper. The results show high order approximation is better than low order approximation for noiseless situation. However, low order approximation is better for noise suppression. Results also show Laplacian is more sensitive to shallow neural activities and the temporal course of neural activities can be correctly reconstructed by a finite difference Laplacian.展开更多
Based on the practical situation of nondestructive examination, the calculation model of the composite scattering is established by using a three-dimensional half-space finite difference time domain, and the Monte Car...Based on the practical situation of nondestructive examination, the calculation model of the composite scattering is established by using a three-dimensional half-space finite difference time domain, and the Monte Carlo method is used to solve the problem of the optical surface with roughness in the proposed scheme. Moreover, the defect particles are observed as periodic particles for a more complex situation. In order to obtain the scattering contribution of defects inside the optical surface, a difference radar cross section is added into the model to analyze the selected calculations on the effects of numbers, separation distances, different depths and different materials of defects. The effects of different incident angles are also discussed. The numerical results are analyzed in detail to demonstrate the best position to find the defects in the optical surface by detecting in steps of a fixed degree for the incident angle.展开更多
The radiative properties of three different materials surfaces with one-dimensional microscale random roughness were obtained with the finite difference time domain method(FDTD) and near-to-far-field transformation.Th...The radiative properties of three different materials surfaces with one-dimensional microscale random roughness were obtained with the finite difference time domain method(FDTD) and near-to-far-field transformation.The surface height conforms to the Gaussian probability density function distribution.Various computational modeling issues that affect the accuracy of the predicted properties were discussed.The results show that,for perfect electric conductor(PEC) surfaces,as the surface roughness increases,the magnitude of the spike reduces and eventually the spike disappears,and also as the ratio of root mean square roughness to the surface correlation distance increases,the retroreflection becomes evident.The predicted values of FDTD solutions are in good agreement with the ray tracing and integral equation solutions.The overall trend of bidirectional reflection distribution function(BRDF) of PEC surfaces and silicon surfaces is the same,but the silicon's is much less than the former's.The BRDF difference from two polarization modes for the gold surfaces is little for smaller wavelength,but it is much larger for the longer wavelength and the FDTD simulation results agree well with the measured data.In terms of PEC surfaces,as the incident angle increases,the reflectivity becomes more specular.展开更多
Surface albedo is a quantitative indicator for land surface processes and climate modeling,and plays an important role in surface radiation balance and climate change.In this study,by means of the MCD43A3 surface albe...Surface albedo is a quantitative indicator for land surface processes and climate modeling,and plays an important role in surface radiation balance and climate change.In this study,by means of the MCD43A3 surface albedo product developed on the basis of Moderate Resolution Imaging Spectroradiometer(MODIS),we analyzed the spatiotemporal variation,persistence status,land cover type differences,and annual and seasonal differences of surface albedo,as well as the relationship between surface albedo and various influencing factors(including Normalized Difference Snow Index(NDSI),precipitation,Normalized Difference Vegetation Index(NDVI),land surface temperature,soil moisture,air temperature,and digital elevation model(DEM))in the north of Xinjiang Uygur Autonomous Region(northern Xinjiang)of Northwest China from 2010 to 2020 based on the unary linear regression,Hurst index,and Pearson's correlation coefficient analyses.Combined with the random forest(RF)model and geographical detector(Geodetector),the importance of the above-mentioned influencing factors as well as their interactions on surface albedo were quantitatively evaluated.The results showed that the seasonal average surface albedo in northern Xinjiang was the highest in winter and the lowest in summer.The annual average surface albedo from 2010 to 2020 was high in the west and north and low in the east and south,showing a weak decreasing trend and a small and stable overall variation.Land cover types had a significant impact on the variation of surface albedo.The annual average surface albedo in most regions of northern Xinjiang was positively correlated with NDSI and precipitation,and negatively correlated with NDVI,land surface temperature,soil moisture,and air temperature.In addition,the correlations between surface albedo and various influencing factors showed significant differences for different land cover types and in different seasons.To be specific,NDSI had the largest influence on surface albedo,followed by precipitation,land surface temperature,and soil moisture;whereas NDVI,air temperature,and DEM showed relatively weak influences.However,the interactions of any two influencing factors on surface albedo were enhanced,especially the interaction of air temperature and DEM.NDVI showed a nonlinear enhancement of influence on surface albedo when interacted with land surface temperature or precipitation,with an explanatory power greater than 92.00%.This study has a guiding significance in correctly understanding the land-atmosphere interactions in northern Xinjiang and improving the regional land-surface process simulation and climate prediction.展开更多
The relationship between the factor of temperature difference of the near-surface layer(T_(1000 hPa)-T_(2m))and sea fog is analyzed using the NCEP reanalysis with a horizontal resolution of l°xl°(2000 to 201...The relationship between the factor of temperature difference of the near-surface layer(T_(1000 hPa)-T_(2m))and sea fog is analyzed using the NCEP reanalysis with a horizontal resolution of l°xl°(2000 to 2011) and the station observations(2010 to 2011).The element is treated as the prediction variable factor in the GRAPES model and used to improve the regional prediction of sea fog on Guangdong coastland.(1) The relationship between this factor and the occurrence of sea fog is explicit:When the sea fog happens,the value of this factor is always large in some specific periods,and the negative value of this factor decreases significantly or turns positive,suggesting the enhancement of warm and moist advection of air flow near the surface,which favors the development of sea fog.(2) The transportation of warm and moist advection over Guangdong coastland is featured by some stages and the jumping among these states.It also gets stronger over time.Meanwhile,the northward propagation of warm and moist advection is quite consistent with the northward advancing of sea fog from south to north along the coastland of China.(3) The GRAPES model can well simulate and realize the factor of near-surface temperature difference.Besides,the accuracy of regional prediction of marine fog,the relevant threat score and Heidke skill score are all improved when the factor is involved.展开更多
In this paper,optical properties of two-dimensional periodic annular slot cavity arrays in hexagonal close-packing on a silica substrate are theoretically characterized by finite difference time domain(FDTD) simulat...In this paper,optical properties of two-dimensional periodic annular slot cavity arrays in hexagonal close-packing on a silica substrate are theoretically characterized by finite difference time domain(FDTD) simulation method.By simulating reflectance spectra,electric field distribution,and charge distribution,we confirm that multiple cylindrical surface plasmon resonances can be excited in annular inclined slot cavities by linearly polarized light,in which the four reflectance dips are attributed to Fabry–Perot cavity resonances in the coaxial cavity.A coaxial waveguide mode TE11 will exist in these annular cavities,and the wavelengths of these reflectance dips are effectively tailored by changing the geometrical pattern of slot cavity and the dielectric materials filled in the cavities.These resonant wavelengths are localized in annular cavities with large electric field enhancement and dissipate gradually due to metal loss.The formation of an absorption peak can be explained from the aspect of phase matching conditions.We observed that the proposed structure can be tuned over the broad spectral range of 600–4000 nm by changing the outer and inner radii of the annular gaps,gap surface topography.Meanwhile,different lengths of the cavity may cause the shift of resonance dips.Also,we study the field enhancement at different vertical locations of the slit.In addition,dielectric materials filling in the annular gaps will result in a shift of the resonance wavelengths,which make the annular cavities good candidates for refractive index sensors.The refractive index sensitivity of annular cavities can also be tuned by the geometry size and the media around the cavity.Annular cavities with novel applications can be implied as surface enhanced Raman spectra substrates,refractive index sensors,nano-lasers,and optical trappers.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42377182,52079133 and 41931295).
文摘The shear strength deterioration of bedding planes between different rock types induced by cyclic loading is vital to reasonably evaluate the stability of soft and hard interbedded bedding rock slopes under earthquake;however,rare work has been devoted to this subject due to lack of attention.In this study,experimental investigations on shear strength weakening of discontinuities with different joint wall material(DDJM)under cyclic loading were conducted by taking the interface between siltstone and mudstone in the Shaba slope of Yunnan Province,China as research objects.A total of 99 pairs of similar material samples of DDJM(81 pairs)and discontinuities with identical joint wall material(DIJM)(18 pairs)were fabricated by inserting plates,engraved with typical surface morphology obtained by performing three-dimensional laser scanning on natural DDJMs sampled from field,into mold boxes.Cyclic shear tests were conducted on these samples to study their shear strength changes with the cyclic number considering the effects of normal stress,joint surface morphology,shear displacement amplitude and shear rate.The results indicate that the shear stress vs.shear displacement curves under each shear cycle and the peak shear strength vs.cyclic number curves of the studied DDJMs are between those of DIJMs with siltstone and mudstone,while closer to those of DIJMs with mudstone.The peak shear strengths of DDJMs exhibit an initial rapid decline followed by a gradual decrease with the cyclic number and the decrease rate varies from 6%to 55.9%for samples with varied surface morphology under different testing conditions.The normal stress,joint surface morphology,shear displacement amplitude and shear rate collectively influence the shear strength deterioration of DDJM under cyclic shear loading,with the degree of influence being greater for larger normal stress,rougher surface morphology,larger shear displacement amplitude and faster shear rate.
基金supported by the National Natural Science Foundation of China(Nos.21773030,21371034,21503042 and 51574090)Natural Science Foundation Fund of Fujian Province(No.2017J01409)the Education Department of Fujian Province(No.JAT160655)
文摘The CO_2 adsorption on CaO(001) surface at different coverages from 1/9 monolayer(ML) to 1 ML has been investigated using density functional theory calculations. With the analysis of the most stable adsorption structures at different coverages, the mechanism of CaO(001)surface carbonating into CaCO_3 has been explored. At low coverages(≤1/3 ML), CO_2 molecule prefers sitting in parallel pattern on the CaO(001) surface, while the structure of the CaO(001)surface remains unchanged. At medium coverage(4/9 ~ 2/3 ML), the repulsive interactions between oxygen atoms of CO_2 become stronger, and the calcium carbonation structure appears on the CaO(001) surface. At high coverage( ≥ 7/9 ML), the structure of the CaO(001) surface is deeply damaged, and a few CO_2 molecules have penetrated into the surface and bound to the O atom of the second layer(sub-surface), eventually forming the layered structure of CaCO_3.Additionally, herein has discussed the simulation of HREELS and thermodynamical stability of these structures at different coverages.
基金funded by the National Key Research and Development Program of China(Grant No.2018YFC1503503)the National Natural Science Foundation of China(Grant Nos.41974015,42061134007,41474019)。
文摘Surface mass anomalies estimated by mass concentration(mascon)approach using Gravity Recovery and Climate Experiment(GRACE)observations with regularization constraints generally present higher spatial resolution than the spheric harmonic(SH)solutions.To analyze the influence of different types of constraints on the estimation of mascon solutions,we carried out a closed-loop simulation experiment to estimate surface mass anomalies over South America based on simulated GRACE intersatellite geopotential differences.Tikhonov regularization with spatial constraint(SC),uniform weighting constraint(UWC),and a prior information constraint(APC)were employed to stabilize the mascon solutions,and the corresponding optimal regularization parameters were determined based on the minimum residual root-mean-square(RMS)criterion.The results show that mascon solutions estimated under different types of constraints are consistent and equivalent when the optimal regularization parameters are selected.The spatial distributions and main characteristics of regional surface mass anomalies estimated by the three types of constraints agree well,and the values of residual RMS with different constraints are very close.But due to the smoothing effect of regularization,the signal strength of mascon solutions is a bit weaker than that of original true signal,especially in the regions with strong signals.In addition,due to the ill-conditioned problem is more serious for higher grid resolution,the relative contribution of the three types of constraints to the final mascon solutions would be stronger.The results show that the averages of relative contribution percentages of these constraints for 2°×2° mascon grids are 80%-90%,while the corresponding values for 4°×4° mascon grids are 30%-60%.However,based on the minimum residual RMS criterion,the accuracy of estimation results is not affected by the type of constraints and their relative contribution to the final mascon solutions.
文摘Based on observational data of arid,semi-arid and semi-humid areas in Northwest China,the characteristics of surface-wa ter heat transfer and land-surface parameters were compared and analyzed.The results show that the annual mean net radi ation was largest in the semi-humid area,followed by the semi-arid area,and then the arid area:77.72 W/m^2,67.73 W/m^2,and 55.47 W/m^2,respectively.The annual mean sensible heat flux was largest in the arid area,followed by the semi-arid and semi-humid areas,while latent heat flux showed the reverse.The annual mean sensible heat flux in arid,semi-arid,and semi-humid areas was 85.7 W/m^2,37.59 W/m^2,and 27.55 W/m^2,respectively.The annual mean latent heat flux was 0 W/m^2,26.08 W/m^2,and 51.19 W/m2,respectively.The annual mean soil-heat flux at the 5-cm soil layer in arid,semi-arid,and semi-humid areas was 1.00 W/m^2,0.82 W/m^2,and 1.25 W/m^2,respectively.The annual mean surface albedo was larg est in the arid area,followed by the semi-humid area;and the smallest was in the semi-arid area:0.24,0.21,and 0.18,re spectively.The annual mean Bowen ratio in the semi-arid area was about 2.06,and that in semi-humid area was about 0.03.The annual mean soil thermal conductivity in the arid,semi-arid,and semi-humid areas was 0.26 W/(m k),1.15 W/(m k),and 1.20 W/(m k),respectively.
基金supported by the National Nature Science Foundation of China(Nos.41504102 and 41604037)National Science and Technology Major Project(No.2016ZX05015-006)Yangtze University Youth Found(No.2015cqn32)
文摘Finite-difference(FD) methods are widely used in seismic forward modeling owing to their computational efficiency but are not readily applicable to irregular topographies. Thus, several FD methods based on the transformation to curvilinear coordinates using body-fitted grids have been proposed, e.g., stand staggered grid(SSG) with interpolation, nonstaggered grid, rotated staggered grid(RSG), and fully staggered. The FD based on the RSG is somewhat superior to others because it satisfies the spatial distribution of the wave equation without additional memory and computational requirements; furthermore, it is simpler to implement. We use the RSG FD method to transform the firstorder stress–velocity equation in the curvilinear coordinates system and introduce the highprecision adaptive, unilateral mimetic finite-difference(UMFD) method to process the freeboundary conditions of an irregular surface. The numerical results suggest that the precision of the solution is higher than that of the vacuum formalism. When the minimum wavelength is low, UMFD avoids the surface wave dispersion. We compare FD methods based on RSG, SEM, and nonstaggered grid and infer that all simulation results are consistent but the computational efficiency of the RSG FD method is higher than the rest.
基金Project supported by the Program for Changjiang Scholars andInnovative Research Team in University of China (No. IRT0536)the National Basic Research Program (973) of China (No. 30740011)
文摘Disparity in the root morphology of six rice(Oryza sativa L.) genotypes varying in potassium(K) efficiency was studied with three K levels:5 mg/L(low),10 mg/L(moderate) and 40 mg/L(adequate) in hydroponic culture. Morphological parameters included root length,surface area,volume and count of lateral roots,as well as fine(diameter<0.2 mm) and thick(diameter>0.2 mm) roots. The results indicate that the root growth of all genotypes was reduced under low K,but moderate K deficiency increased the root length of the efficient genotypes. At deficient and moderate K levels,all the efficient rice genotypes developed more fine roots(diameter<0.2 mm) than the inefficient ones. Both fine root count and root surface area were found to be the best parameters to portray K stress in rice. In accordance with the root morphology,higher K concentrations were noted in shoots of the efficient genotypes when grown at moderate and deficient K levels,indicating that root morphology parameters are involved in root uptake for K and in the translocation of K up to shoots. K deficiency affected not only the root morphology,but also the root ultra-structure. The roots of high-efficient genotypes had stronger tolerance to K deficient stress for root membrane damage,and could maintain the developed root architecture to adapt to the low K growth medium.
基金supported by the National Natural Science Foundation of China (41671418 and 41371326)the Science and Technology Facilities Council of UK-Newton Agritech Programme (Sentinels of Wheat)the Fundamental Research Funds for the Central Universities, China (2019TC117)
文摘Soil temperatures at different depths down the soil profile are important agro-meteorological indicators which are necessary for ecological modeling and precision agricultural activities. In this paper, using time series of soil temperature(ST) measured at different depths(0, 5, 10, 20, and 40 cm) at agro-meteorological stations in northern China as reference data, ST was estimated from land surface temperature(LST) and normalized difference vegetation index(NDVI) derived from AQUA/TERRA MODIS data, and solar declination(Ds) in univariate and multivariate linear regression models. Results showed that when daytime LST is used as predictor, the coefficient of determination(R^2) values decrease from the 0 cm layer to the 40 cm layer. Additionally, with the use of nighttime LST as predictor, the R^2 values were relatively higher at 5, 10 and 15 cm depths than those at 0, 20 and 40 cm depths. It is further observed that the multiple linear regression models for soil temperature estimation outperform the univariate linear regression models based on the root mean squared errors(RMSEs) and R^2. These results have demonstrated the potential of MODIS data in tandem with the Ds parameter for soil temperature estimation at the upper layers of the soil profile where plant roots grow in. To the best of our knowledge, this is the first attempt at the synergistic use of LST, NDVI and Ds for soil temperature estimation at different depths of the upper layers of the soil profile, representing a significant contribution to soil remote sensing.
基金supported by the National Key Scientific Instrument and Equipment Development Projects,China(Grant No.2013YQ470767)。
文摘Laser spot thermography is a novel technique for the detection of surface cracks with a laser to heat sample locally and with an IR camera to record the surface temperature distribution. Common methods to characterize cracks are only suitable for the situation that the laser scanning path is vertical to the crack. But due to the randomness of cracks,when the scanning path is parallel to the crack,surface cracks cannot be detected by these methods. To tackle this problem,a method is presented which is suitable for the situation that the scanning path is parallel to crack. The main idea is to evaluate the crack-caused asymmetries of the surface temperature distribution. The effect of temperature gradient and the maximum scanning interval are analyzed by a 2D simulation. A new crack imaging technique is presented that is based on delayed temperature difference at symmetric points to characterize the crack in the thermal image. Compared well with those obtained by the spatial first derivative method,experimental results are shown to efficiently prove this method.
基金Supported by the 973 Project (No.2003CB716106) and the National Natural Science Foundation of China (No. 60571019, 30525030).
文摘Surface Laplacian map provides a better spatial resolution than surface potential distribution. Different order finite difference approximations are deduced and compared by simulations on a plane in this paper. The results show high order approximation is better than low order approximation for noiseless situation. However, low order approximation is better for noise suppression. Results also show Laplacian is more sensitive to shallow neural activities and the temporal course of neural activities can be correctly reconstructed by a finite difference Laplacian.
基金supported by the National Natural Science Foundation of China(Grant Nos.61308071,61601355,and 61571355)the Natural Science Foundation of Shaanxi Province,China(Grant No.2016JM6011)
文摘Based on the practical situation of nondestructive examination, the calculation model of the composite scattering is established by using a three-dimensional half-space finite difference time domain, and the Monte Carlo method is used to solve the problem of the optical surface with roughness in the proposed scheme. Moreover, the defect particles are observed as periodic particles for a more complex situation. In order to obtain the scattering contribution of defects inside the optical surface, a difference radar cross section is added into the model to analyze the selected calculations on the effects of numbers, separation distances, different depths and different materials of defects. The effects of different incident angles are also discussed. The numerical results are analyzed in detail to demonstrate the best position to find the defects in the optical surface by detecting in steps of a fixed degree for the incident angle.
基金Project(2009AA05Z215) supported by the National High-Tech Research and Development Program of China
文摘The radiative properties of three different materials surfaces with one-dimensional microscale random roughness were obtained with the finite difference time domain method(FDTD) and near-to-far-field transformation.The surface height conforms to the Gaussian probability density function distribution.Various computational modeling issues that affect the accuracy of the predicted properties were discussed.The results show that,for perfect electric conductor(PEC) surfaces,as the surface roughness increases,the magnitude of the spike reduces and eventually the spike disappears,and also as the ratio of root mean square roughness to the surface correlation distance increases,the retroreflection becomes evident.The predicted values of FDTD solutions are in good agreement with the ray tracing and integral equation solutions.The overall trend of bidirectional reflection distribution function(BRDF) of PEC surfaces and silicon surfaces is the same,but the silicon's is much less than the former's.The BRDF difference from two polarization modes for the gold surfaces is little for smaller wavelength,but it is much larger for the longer wavelength and the FDTD simulation results agree well with the measured data.In terms of PEC surfaces,as the incident angle increases,the reflectivity becomes more specular.
基金This research was supported by the National Key Research and Development Program of China(2019YFC1510505)the Xinjiang University PhD Start-up Fund(BS210226)the National College Student Research Training Plan of China(202210755004).
文摘Surface albedo is a quantitative indicator for land surface processes and climate modeling,and plays an important role in surface radiation balance and climate change.In this study,by means of the MCD43A3 surface albedo product developed on the basis of Moderate Resolution Imaging Spectroradiometer(MODIS),we analyzed the spatiotemporal variation,persistence status,land cover type differences,and annual and seasonal differences of surface albedo,as well as the relationship between surface albedo and various influencing factors(including Normalized Difference Snow Index(NDSI),precipitation,Normalized Difference Vegetation Index(NDVI),land surface temperature,soil moisture,air temperature,and digital elevation model(DEM))in the north of Xinjiang Uygur Autonomous Region(northern Xinjiang)of Northwest China from 2010 to 2020 based on the unary linear regression,Hurst index,and Pearson's correlation coefficient analyses.Combined with the random forest(RF)model and geographical detector(Geodetector),the importance of the above-mentioned influencing factors as well as their interactions on surface albedo were quantitatively evaluated.The results showed that the seasonal average surface albedo in northern Xinjiang was the highest in winter and the lowest in summer.The annual average surface albedo from 2010 to 2020 was high in the west and north and low in the east and south,showing a weak decreasing trend and a small and stable overall variation.Land cover types had a significant impact on the variation of surface albedo.The annual average surface albedo in most regions of northern Xinjiang was positively correlated with NDSI and precipitation,and negatively correlated with NDVI,land surface temperature,soil moisture,and air temperature.In addition,the correlations between surface albedo and various influencing factors showed significant differences for different land cover types and in different seasons.To be specific,NDSI had the largest influence on surface albedo,followed by precipitation,land surface temperature,and soil moisture;whereas NDVI,air temperature,and DEM showed relatively weak influences.However,the interactions of any two influencing factors on surface albedo were enhanced,especially the interaction of air temperature and DEM.NDVI showed a nonlinear enhancement of influence on surface albedo when interacted with land surface temperature or precipitation,with an explanatory power greater than 92.00%.This study has a guiding significance in correctly understanding the land-atmosphere interactions in northern Xinjiang and improving the regional land-surface process simulation and climate prediction.
基金Chinese Special Scientific Research Project for Public Interest(GYHY200906008)Natural Science Foundation of China(41275025)+2 种基金Guangdong Science and Technology Plan Project(2012A061400012)Meteorological Project from Guangdong Meteorological Bureau(201003)Research on Pre-warning and Forecasting Techniques for Marine Meteorology from Guangdong Meteorological Bureau
文摘The relationship between the factor of temperature difference of the near-surface layer(T_(1000 hPa)-T_(2m))and sea fog is analyzed using the NCEP reanalysis with a horizontal resolution of l°xl°(2000 to 2011) and the station observations(2010 to 2011).The element is treated as the prediction variable factor in the GRAPES model and used to improve the regional prediction of sea fog on Guangdong coastland.(1) The relationship between this factor and the occurrence of sea fog is explicit:When the sea fog happens,the value of this factor is always large in some specific periods,and the negative value of this factor decreases significantly or turns positive,suggesting the enhancement of warm and moist advection of air flow near the surface,which favors the development of sea fog.(2) The transportation of warm and moist advection over Guangdong coastland is featured by some stages and the jumping among these states.It also gets stronger over time.Meanwhile,the northward propagation of warm and moist advection is quite consistent with the northward advancing of sea fog from south to north along the coastland of China.(3) The GRAPES model can well simulate and realize the factor of near-surface temperature difference.Besides,the accuracy of regional prediction of marine fog,the relevant threat score and Heidke skill score are all improved when the factor is involved.
基金Project supported by the National Natural Science Foundation of China(Grant No.61178044)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20160969)the University Postgraduate Research and Innovation Project of Jiangsu Province,China(Grant No.KYLX 0723)
文摘In this paper,optical properties of two-dimensional periodic annular slot cavity arrays in hexagonal close-packing on a silica substrate are theoretically characterized by finite difference time domain(FDTD) simulation method.By simulating reflectance spectra,electric field distribution,and charge distribution,we confirm that multiple cylindrical surface plasmon resonances can be excited in annular inclined slot cavities by linearly polarized light,in which the four reflectance dips are attributed to Fabry–Perot cavity resonances in the coaxial cavity.A coaxial waveguide mode TE11 will exist in these annular cavities,and the wavelengths of these reflectance dips are effectively tailored by changing the geometrical pattern of slot cavity and the dielectric materials filled in the cavities.These resonant wavelengths are localized in annular cavities with large electric field enhancement and dissipate gradually due to metal loss.The formation of an absorption peak can be explained from the aspect of phase matching conditions.We observed that the proposed structure can be tuned over the broad spectral range of 600–4000 nm by changing the outer and inner radii of the annular gaps,gap surface topography.Meanwhile,different lengths of the cavity may cause the shift of resonance dips.Also,we study the field enhancement at different vertical locations of the slit.In addition,dielectric materials filling in the annular gaps will result in a shift of the resonance wavelengths,which make the annular cavities good candidates for refractive index sensors.The refractive index sensitivity of annular cavities can also be tuned by the geometry size and the media around the cavity.Annular cavities with novel applications can be implied as surface enhanced Raman spectra substrates,refractive index sensors,nano-lasers,and optical trappers.