The present investigation is concerned with the reaction of barium and iron nitrates mixtures using three different molar ratios, 1:1 (Ⅰ), 1:2 (Ⅱ) and 2:1 (Ⅲ) at different temperatures as pointed out from the DTA d...The present investigation is concerned with the reaction of barium and iron nitrates mixtures using three different molar ratios, 1:1 (Ⅰ), 1:2 (Ⅱ) and 2:1 (Ⅲ) at different temperatures as pointed out from the DTA data. The reaction products exhibit 12 compounds namely, Ba(NO3)2, αFe2O3, Fe3O4, BaFeO3, BaFeO2.9, hexagonal BaFeO3-x, tetragonal BaFeO3-x, BaFe2O4, αBaFe2O4, Ba2Fe6O11, Ba5Fe14O26 and BaFe12O19. The formation of these products depend on the molar ratio between the reactants and the reaction temperature. The reaction products were studied by DTA and TG techniques and characterized by X-ray diffraction patterns, magnetic susceptibility data and scanning electron microscopy, SEM.展开更多
Fusion power output is proportional not only to the fuel particle number densities participating in reaction but also to the fusion reaction rate coefficient (or reactivity), which is dependent on reactant velocity ...Fusion power output is proportional not only to the fuel particle number densities participating in reaction but also to the fusion reaction rate coefficient (or reactivity), which is dependent on reactant velocity distribution functions. They are usuMly assumed to be dual Maxwellian distribution functions with the same temperature for thermal nuclear fusion circumstances. However, if high power neutral beam injection and minority ion species ICRF plasma heating, or multi-pinched plasma beam head-on collision, in a converging region are required and investigated in future large scale fusion reactors, then the fractions of the injected energetic fast ion tail resulting from ionization or charge exchange will be large enough and their contribution to the non-Maxwellian distribution functions is not negligible, hence to the fusion reaction rate coefficient or calculation of fusion power. In such cases, beam-target, and beam-beam reaction enhancement effect contributions should play very important roles. In this paper, several useful formulae to calculate the fusion reaction rate coefticient for different beam and target combination scenarios are derived in detail展开更多
文摘The present investigation is concerned with the reaction of barium and iron nitrates mixtures using three different molar ratios, 1:1 (Ⅰ), 1:2 (Ⅱ) and 2:1 (Ⅲ) at different temperatures as pointed out from the DTA data. The reaction products exhibit 12 compounds namely, Ba(NO3)2, αFe2O3, Fe3O4, BaFeO3, BaFeO2.9, hexagonal BaFeO3-x, tetragonal BaFeO3-x, BaFe2O4, αBaFe2O4, Ba2Fe6O11, Ba5Fe14O26 and BaFe12O19. The formation of these products depend on the molar ratio between the reactants and the reaction temperature. The reaction products were studied by DTA and TG techniques and characterized by X-ray diffraction patterns, magnetic susceptibility data and scanning electron microscopy, SEM.
基金Supported by the International Thermonuclear Experimental Reactor Project of China under Grant No 2013GB114003the National Natural Science Foundation of China under Grant No 11275135
文摘Fusion power output is proportional not only to the fuel particle number densities participating in reaction but also to the fusion reaction rate coefficient (or reactivity), which is dependent on reactant velocity distribution functions. They are usuMly assumed to be dual Maxwellian distribution functions with the same temperature for thermal nuclear fusion circumstances. However, if high power neutral beam injection and minority ion species ICRF plasma heating, or multi-pinched plasma beam head-on collision, in a converging region are required and investigated in future large scale fusion reactors, then the fractions of the injected energetic fast ion tail resulting from ionization or charge exchange will be large enough and their contribution to the non-Maxwellian distribution functions is not negligible, hence to the fusion reaction rate coefficient or calculation of fusion power. In such cases, beam-target, and beam-beam reaction enhancement effect contributions should play very important roles. In this paper, several useful formulae to calculate the fusion reaction rate coefticient for different beam and target combination scenarios are derived in detail