Decomposition processes of the quenched Zn-Al alloys were studied by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the stabilities o...Decomposition processes of the quenched Zn-Al alloys were studied by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the stabilities of supersaturated solid solution (SSS) of Zn-Al alloy and α' phase formed by quenching would reduce with the increase of Zn content and the precipitation of η-Zn phases even when aging at ambient temperature, so that the exothermic precipitation peak in DSC curve would disappear. The activation energy of the η-Zn precipitation and the reaction enthalpy were calculated and measured. The kinetics of α' decomposition or η-Zn formation was determined by XRD. The microstructure change during aging was observed by TEM.展开更多
Differential scanning calorimetry (DSC) has been used extensively to study different solid state reactions. The signals measured in DSC are associated with the growth and dissolution of different precipitates during...Differential scanning calorimetry (DSC) has been used extensively to study different solid state reactions. The signals measured in DSC are associated with the growth and dissolution of different precipitates during a specific heat cycle. The time-temperature dependence of heat cycles and the corresponding heat flow evolution measured in the sample by DSC provide valuable experimental information about the phase evolution and the precipitation kinetics in the material. The thermo-kinetic computer simulation was used to predict the DSC signals of samples taken from 6xxx and 2xxx alloys. In the model, the evolution of different metastable and stable phases and the role and influence of excess quenched-in vacancies in the early stage of precipitation were taken into account. Transmission electron microscopy (TEM) and high-resolution TEM were used to verify the existence of precipitates, their size and number density at specific points of the DSC curves.展开更多
In order to test the thermal decomposition of 1,3,5-trinitro-1,3,5-triazinane(RDX),the linear temperature rise experiment of RDX was carried out by differential scanning calorimeter under different heating rate condit...In order to test the thermal decomposition of 1,3,5-trinitro-1,3,5-triazinane(RDX),the linear temperature rise experiment of RDX was carried out by differential scanning calorimeter under different heating rate conditions.The kinetic calculation of RDX thermal decomposition curve was carried out by Kissinger and Ozawa methods,respectively,and the thermal analysis software was used to calculate the parameters such as self-accelerating decomposition temperature.The results show that the initial decomposition temperature range,decomposition peak temperature range,and decomposition completion temperature range of RDX are 208.4-214.2,225.7-239.3 and 234.0-252.4℃,respectively,and the average decomposition enthalpy is 362.9 J·g^-1.Kissinger method was used to calculate the DSC experimental data of RDX,the apparent activation energy obtained is 190.8 kJ·mol^-1,which is coincident with the results calculated by Ozawa method at the end of the reaction,indicating that the apparent activation energy calculated by the two methods is relatively accurate.When the packaging mass values are 1.0,2.0 and 5.0 kg,respectively,the self-accelerating decomposition temperatures are 97.0,93.0 and 87.0℃,respectively,indicating that with the increase of packaging mass,the self-accelerating decomposition temperature gradually decreases,and the risk increases accordingly.展开更多
The differential scanning calorimetric (DSC)curves of the mitochondria isolated from two varieties of sporophyte cytoplasmic male sterile and their fertile lines of Yie Bai and Ma Xie type rice have been determined. T...The differential scanning calorimetric (DSC)curves of the mitochondria isolated from two varieties of sporophyte cytoplasmic male sterile and their fertile lines of Yie Bai and Ma Xie type rice have been determined. The curves show that the energy is released continuously as temperature rise to 70℃. Some thermodynamic and kinetic parameters of the energy release of the mitochondria have been obtained. The presented results showed that the mitochondria from cytoplasmic male sterile rice released more heat and they had higher energy barrier, less rate, and more complicated mechanism than that of their fertile lines in the energy release process.展开更多
Background:Differential scanning calorimetry as a method of investigating and monitoring the kinetics of herbal medicinal plants.Some instrumental and experimental aspects are discussed.Methods:A brief survey is made ...Background:Differential scanning calorimetry as a method of investigating and monitoring the kinetics of herbal medicinal plants.Some instrumental and experimental aspects are discussed.Methods:A brief survey is made of herbal medicinal plants and results of differential scanning calorimetry studies are reviewed and this discussion is presented the effects of the instrumental conditions like heating rate and the sample conditions like sample particle size,sample mass,sample purity,sample stability in the melting region and property of impurities.Conclusion:This study suggests that application of differential scanning calorimetry to study the interpretation on herbal medicinal drugs.展开更多
A new differential equation was derived from the modified first-order kinetic model to describe the polymer crystallization processes. The crystallization experiments were carried out by means of DSC. Poly (ethylene t...A new differential equation was derived from the modified first-order kinetic model to describe the polymer crystallization processes. The crystallization experiments were carried out by means of DSC. Poly (ethylene terephthalate) resins were selected as the samples containing different catalysts. The relationships between the parameters obtained from the known Avrami equation and from one in the present paper were discussed. A method for applying the equation to determine the kinetic parameters from a constant heating and a constant cooling curve was proposed.展开更多
Differential scanning calorimetry (DSC) is one of the few techniques that allow direct determination of enthalpy values for binding reactions and conformational transitions in biomolecules. It provides the thermody-...Differential scanning calorimetry (DSC) is one of the few techniques that allow direct determination of enthalpy values for binding reactions and conformational transitions in biomolecules. It provides the thermody- namics information of the biomolecules which consists of Gibbs free energy, enthalpy and entropy in a straightfor- ward manner that enables deep understanding of the structure function relationship in biomolecules such as the folding/unfolding of protein and DNA, and ligand bindings. This review provides an up to date overview of the applications of DSC in biomolecular study such as the bovine serum albumin denaturation study, the relationship between the melting point of lysozyme and the scanning rate. We also introduce the recent advances of the development of micro-electro-mechanic-system (MEMS) based DSCs.展开更多
In order to evaluate the spontaneous combustion hazard of sulfide concentrates in storage, three different kinds of sulfide concentrates (sulfur-rich sulfide concentrate, iron sulfide concentrate and copper sulfide c...In order to evaluate the spontaneous combustion hazard of sulfide concentrates in storage, three different kinds of sulfide concentrates (sulfur-rich sulfide concentrate, iron sulfide concentrate and copper sulfide concentrate) were obtained from a storage yard in Dongguashan Copper Mine, China. The reaction processes at different heating rates of 5, 10, 15, 20, and 25 ℃/min in air flow from ambient temperature to 1 000 ℃ were studied by TG-DTG-DSC analysis. By the peak temperatures of DTG curves, the whole reaction process for each sample was divided into different stages, and the corresponding apparent activation energies were calculated by the Ozawa-Flynn-Wall method. It is found that the reaction process of each sample is considerably complex; the apparent activation energy values change from 36 to 160 kJ/mol in different temperature ranges; sulfur-rich sulfide and iron sulfide concentrates have lower apparent activation energy than copper sulfide concentrate below 150 ℃; so they are more inclined to cause spontaneous combustion at ambient temperature.展开更多
A kind of neat asphalt and three kinds of diatomite asphalt are tested using differential scanning calorimetry(DSC). The anti-cracking mechanism of diatomite asphalt is analyzed by DSC and the thermal stress restrai...A kind of neat asphalt and three kinds of diatomite asphalt are tested using differential scanning calorimetry(DSC). The anti-cracking mechanism of diatomite asphalt is analyzed by DSC and the thermal stress restrained specimen test(TSRST) of the asphalt mixtures. The results show that the low temperature performance of diatomite asphalt is better than that of neat asphalt. The glass transition temperature can reflect the low temperature performance of the diatomite asphalt better and has a good relationship with breaking temperatures. Besides, the TSRST, the bending test, the compressing test and the contraction coefficient test are used to study the low temperature performance of the diatomite asphalt mixture. The results prove that the low temperature performance of the diatomite asphalt mixture is better than that of the neat asphalt mixture. The critical bending strain energy density and the compressing strain energy density of the diatomite asphalt mixture are greater than those of the neat asphalt mixture. After adding diatomite to the asphalt mixture, the contraction coefficient is reduced. Based on the above results, the anti-cracking mechanism of the diatomite asphalt mixture is analyzed from the angle of contraction performance and breaking energy.展开更多
A water-TiO2nanofluid with a weight fraction of 5% and an average particle size of 75 nm is used to investigate the effect of TiO2 nanoparticles on the crystallization and melting behaviors of deionized water by using...A water-TiO2nanofluid with a weight fraction of 5% and an average particle size of 75 nm is used to investigate the effect of TiO2 nanoparticles on the crystallization and melting behaviors of deionized water by using differential scanning calorimetry(DSC)at four different cooling rates,3,5,7,9 ℃/min.The DSC experimental results show that the water-TiO2 nanofluid has a lower supercooling degree and a faster crystallization rate than the deionized water.With the increase in the cooling rate,the influence of the TiO2 nanoparticles on the supercooling degree of the deionized water becomes greater,but on the crystallization rate it turns lower.During the melting process,compared with the deionized water,the water-TiO2 nanofluid has a lower melting temperature,a less latent heat and a higher melting rate.展开更多
The precipitation kinetics of 2519 A aluminum alloy after different cold rolling reductions before aging was investigated by hardness test and differential scanning calorimetry(DSC). The activation energy was calcul...The precipitation kinetics of 2519 A aluminum alloy after different cold rolling reductions before aging was investigated by hardness test and differential scanning calorimetry(DSC). The activation energy was calculated according to DSC curves using single heating rate method. The microstructures of as-rolled and peak-aged alloys were observed by transmission electron microscopy(TEM). The result shows that the age hardenability reduces and the activation energy rises with increasing the reduction from 7% to 40%. Nonuniform dislocations are found in as-rolled alloy and inhomogeneous distribution of θ′ phase is revealed in peak-aged alloy when the reduction is 15%. The inhomogeneous distribution of θ′ phase may be related to the age hardenability reducing and activation energy rising.展开更多
The influence of rare earth (RE) elements on the solidification process and eutectic transformation and mechanical properties of the high-V type cast, high-speed steel roll was studied. Test materials with different...The influence of rare earth (RE) elements on the solidification process and eutectic transformation and mechanical properties of the high-V type cast, high-speed steel roll was studied. Test materials with different RE additions were prepared on a horizontal centrifugal casting machine. The solidification process, eutectic structure transformation, carbide morphology, and the elements present, were all investigated by means of differential scanning calorimetry (DSC) and scanning electron microscopy energy dispersive spectrometry (SEM-EDS). The energy produced by crack initiation and crack extension was analyzed using a digital impact test machine. It was found that rare earth elements increased the tensile strength of the steel by inducing crystallization of earlier eutectic γ-Fe during the solidification process, which in turn increased the solidification temperature and thinned the dendritic grains. Rare earth elements with large atomic radius changed the lattice parameters of the MC carbide by forming rare earth carbides. This had the effect of dispersing longpole M C carbides to provide carbide grains, thereby, reducing the formation of the gross carbide and making more V available, to increase the secondary hardening process and improve the hardness level. The presence of rare earth elements in the steel raised the impact toughness by changing the mechanism of MC carbide formation, thereby increasing the crack initiation energy.展开更多
In the dry-sliding process of the woven self-lubricating liner which is used in the self-lubricating spherical plain bearing, the friction heat plays an important role in the tribological performances of the liner. It...In the dry-sliding process of the woven self-lubricating liner which is used in the self-lubricating spherical plain bearing, the friction heat plays an important role in the tribological performances of the liner. It has important value to study on the relationship between tribological performances of the liner and the friction heat. Unforttmately, up to now, published work on this relationship is quite scarce. Therefore, the effect of friction heat on the tribological performances of the liner was investigated in the present work. The tribological behaviors of the liner were evaluated by using the high temperature end surface wear tester. Scanning electron microscopy (SEM) was utilized to examine the morphologies of worn surfaces of the liner and study the failure modes. Differential scanning calorimetry (DSC) measurement and X-ray diffraction (XRD) analysis were performed to study the behaviors of the wear debris. The temperature rise on the worn surface was calculated according to classical models. SEM observation shows that the dominating wear mechanism for the liner is mainly affected by friction shear force, contact pressure and friction heat. Higher fusion heat for the wear debris than that for the pure polytetrafluroethylene (PTFE) indicates that the PTFE is the main portion of the wear debris, and, the PTFE in the wear debris shows a higher crystallisation degree owing to the effects of friction shear force and the friction heat. Combining the calculated temperature rise results with the wear rate of the liner, it can be concluded that the effects of temperature rise o n the tribological performances of the liner become more obvious when the temperature rise exceeds the glass transition temperature (Tg) of the PTFE. The wear resistance of the liner deteriorates dramatically when the temperature rise approaches to the melting point (Ton) of the PTFE. The tribological performances of the liner can be improved when the temperature rise exceeds Tg but is far lower than Ton- The present study on the relationship between the temperature rise and the tribological performances of the liner may provide the basis for further understanding of the wear mechanisms of the liner as well as the relationship between the formation of the PTFE transfer film and the friction heat during the dry-sliding of the Finer.展开更多
Bio-sourced nylon 69,one of promising engineering plastics,has a great potential in developing sustainable technology and various commercial applications.Isothermal and nonisothermal crystallization kinetics of nylon ...Bio-sourced nylon 69,one of promising engineering plastics,has a great potential in developing sustainable technology and various commercial applications.Isothermal and nonisothermal crystallization kinetics of nylon 69 is a base to optimize the process conditions and establish the structure–property correlations for nylon 69,and it is also highly bene ficial for successful applications of nylon products in industry.Isothermal and nonisothermal crystallization kinetics has been investigated by differential scanning calorimetry for nylon 69,bio-sourced even–odd nylon.The isothermal crystallization kinetics has been analyzed by the Avrami equation,the calculated Avrami exponent at various crystallization temperatures falls into the range of 2.28 and 2.86.In addition,the Avrami equation modi fied by Jeziorny and the equation suggested by Mo have been adopted to study the nonisothermal crystallization.The activation energies for isothermal and nonisothermal crystallization have also been determined.The study demonstrates that the crystallization model of nylon 69 might be a twodimensional(circular)growth at both isothermal and nonisothermal crystallization conditions.Furthermore,the value of the crystallization rate parameter(K)decreases signi ficantly but the crystallization half-time(t1/2)increases with the increase of the isothermal crystallization temperature.To nonisothermal crystallization,the crystallization rate increases as the cooling rate increases according to the analysis of Jeziorny's theory.The results of Mo's theory suggest that a faster cooling rate is required to reach a higher relative degree of crystallinity in a unit of time,and crystallization rate decreases when the relative degree of crystallinity increases at nonisothermal crystallization conditions.展开更多
Stearic acid (67.83℃) and myristic acid (52.32℃) have high melting temperatures that can limit their use as phase change material (PCM) in low temperature solar heating applications such as solar space and greenhous...Stearic acid (67.83℃) and myristic acid (52.32℃) have high melting temperatures that can limit their use as phase change material (PCM) in low temperature solar heating applications such as solar space and greenhouse heating in regard to climatic requirements. However, their melting temperatures can be adjusted to a suitable value by preparing a eutectic mixture of the myristic acid (MA) and the stearic acid (SA). In the present study, the thermal analysis based on differential scanning calorimetry (DSC) technique shows that the mixture of myristic acid (MA) and stearic acid (SA) in the respective composition (by mass) of 64% and 36% forms a eutectic mixture having melting temperature of 44.13℃ and the latent heat of fusion of 182.4J·g-1. The thermal energy storage characteristics of the MA-SA eutectic mixture filled in the annulus of two concentric pipes were also experimentally established. The heat recovery rate and heat charging/discharging fractions were determined with respect to the change in the mass flow rate and the inlet temperature of heat transfer fluid. Based on the results obtained by DSC analysis and by the heat charg- ing/discharging processes of the PCM, it can be concluded that the MA-SA eutectic mixture is a potential material for low temperature thermal energy storage applications in terms of its thermo-physical and thermal characteristics.展开更多
Polyamide 1010 (PA1010)/thermoplastie poly (ether urethane) elastomer (ether-based TPU) blends were prepared via melt extrusion. The crystallization kinetics and melting behavior of PA1010/ether-based TPU blends...Polyamide 1010 (PA1010)/thermoplastie poly (ether urethane) elastomer (ether-based TPU) blends were prepared via melt extrusion. The crystallization kinetics and melting behavior of PA1010/ether-based TPU blends were systematically investigated using differential scanning calorimetry. The crystallization kinetics results show that the addition of ether-based TPU hinders the crystallization of PA1010, and the hindrance effect increases with the increase of the concentration of ether-based TPU. Both pure PA1010 and PA1010/ether-based TPU blends exhibit double melting peaks in the process of nonisothermal crystallization. The double melting peaks change differently with the variation of cooling rate and blend composition. The cooling rate only influences the lower melting peak; however, the blend composition influences not only the lower melting peak but also the higher melting peak. The reason for the phenomenon must be the interaction between the two compositions.展开更多
A series of low-temperature phase transitions of sodium aluminate solutions were studied by differential scanning calorimetry (DSC) and Raman spectroscopy. The results indicate that NaOH concentration is a primary imp...A series of low-temperature phase transitions of sodium aluminate solutions were studied by differential scanning calorimetry (DSC) and Raman spectroscopy. The results indicate that NaOH concentration is a primary impact factor for the binary eutectic point and ice melting temperature of sodium aluminate solutions with low NaOH concentration. In addition, the phase transition process of sodium aluminate solutions with low NaOH concentration from 123.15 to 283.15 K is divided into four steps: non-crystal to crystal, ternary eutectic reaction, binary eutectic reaction and ice melt. The projection phase diagram of NaOH-Al(OH)3-H2O system at low temperature was plotted, in which the ternary eutectic temperature for sodium aluminate solutions is 183.15 K.展开更多
The precipitation behaviour during cooling from solution annealing of high alloyed 7049A aluminium alloy was investigated, covering the complete cooling-rate-range of technical interest. This ranges from slow cooling ...The precipitation behaviour during cooling from solution annealing of high alloyed 7049A aluminium alloy was investigated, covering the complete cooling-rate-range of technical interest. This ranges from slow cooling rates close to equilibrium up to rates above complete supersaturation and is covering seven orders of magnitude in cooling rate (0.0005 to 5000 K/s). The continuous cooling precipitation behaviour of 7049A alloy was recorded by combining different differential scanning calorimetry (DSC) techniques and microstructure analysis by SEM and Vickers hardness testing. The high alloyed, high strength and quench sensitive wrought aluminium alloy 7049A was investigated during quenching from solution annealing by conventional DSC in the cooling rate range of 0.0005 to 4 K/s. In this range at least two exothermal precipitation reactions were observed: a high temperature reaction in a narrow temperature interval of 450-430℃, and a low temperature reaction in a broad temperature interval down to about 200 ℃. Intensities of both reactions decreased with increasing cooling rate. Quenching from solution annealing with rates up to 1000 K/s was investigated by differential fast scanning calorimetry (DFSC) and the differential reheating method (DRM). A critical quenching rate to suppress all precipitation reactions of 100-300 K/s was been determined.展开更多
The effects of aging temperature and time on the hardness and impact toughness of a copper-bearing high-strength low-carbon steel were investigated. The hardness of the aged samples reached maxima after 1 h and 5 h of...The effects of aging temperature and time on the hardness and impact toughness of a copper-bearing high-strength low-carbon steel were investigated. The hardness of the aged samples reached maxima after 1 h and 5 h of aging at 500 and 450℃, respectively; this increase in hardness was followed by a decrease in hardness until a temperature of 700℃, at which secondary hardening was observed. The impact toughness of the aged steel was found to be higher for 5 h of aging. Transmission electron microscopy confirmed the presence of carbide and copper precipitates; also, the secondary hardening could be the result of the transformation of austenite(formed in the aging treatment) to martensite. Differential scanning calorimetry of the steel was performed to better understand the precipitation behavior. The results revealed that the precipitation of the steel exhibited two significant stages of copper precipitate nucleation and coarsening of the precipitates, with corresponding activation energies of 49 and 238 kJ·mol^-1, respectively.展开更多
Acetanilide, adipic acid and potassium hydrogen phthalate were chosen as nucleating agents of polyvinyl chloride(PVC), and their effects on PVC crystallization were studied by differential scanning calorimetry, wide...Acetanilide, adipic acid and potassium hydrogen phthalate were chosen as nucleating agents of polyvinyl chloride(PVC), and their effects on PVC crystallization were studied by differential scanning calorimetry, wide angle X-ray diffraction and fourier transform infrared spectroscopy. The experimental results indicate that all of the three additives are compatible with PVC to some extent, but adipic acid's compatibility with PVC is less satisfactory. The three additives can improve PVC crystallinity, and acetanilide can decrease PVC glass transition temperature(T)and narrow PVC melting range, while adipic acid and potassium hydrogen phthalate rise T of PVC and widen its melting range. All additives do not affect PVC crystal system and all g samples are in orthorhombic system. All additives can improve (200), (110), (210) and (201, 111) planes growing. Moreover, acetanilide and adipic acid can shrink PVC spacings and improve the crystal perfection of PVC, but potassium hydrogen phthalate swells spacings and reduces the perfection of PVC crystal.展开更多
文摘Decomposition processes of the quenched Zn-Al alloys were studied by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the stabilities of supersaturated solid solution (SSS) of Zn-Al alloy and α' phase formed by quenching would reduce with the increase of Zn content and the precipitation of η-Zn phases even when aging at ambient temperature, so that the exothermic precipitation peak in DSC curve would disappear. The activation energy of the η-Zn precipitation and the reaction enthalpy were calculated and measured. The kinetics of α' decomposition or η-Zn formation was determined by XRD. The microstructure change during aging was observed by TEM.
基金Financial support by the Austrian Federal Government (in particular from Bundesministerium für Verkehr, Innovation und Technologie and Bundesministerium für Wirtschaft, Familie und Jugend) represented by sterreichische Forschungsfrderungsgesellschaft mbHthe Styrian and the Tyrolean Provincial Government, represented by Steirische Wirtschaftsfrderungsgesellschaft mbH and Standortagentur Tirol, within the framework of the COMET Funding Programme is gratefully acknowledged
文摘Differential scanning calorimetry (DSC) has been used extensively to study different solid state reactions. The signals measured in DSC are associated with the growth and dissolution of different precipitates during a specific heat cycle. The time-temperature dependence of heat cycles and the corresponding heat flow evolution measured in the sample by DSC provide valuable experimental information about the phase evolution and the precipitation kinetics in the material. The thermo-kinetic computer simulation was used to predict the DSC signals of samples taken from 6xxx and 2xxx alloys. In the model, the evolution of different metastable and stable phases and the role and influence of excess quenched-in vacancies in the early stage of precipitation were taken into account. Transmission electron microscopy (TEM) and high-resolution TEM were used to verify the existence of precipitates, their size and number density at specific points of the DSC curves.
文摘In order to test the thermal decomposition of 1,3,5-trinitro-1,3,5-triazinane(RDX),the linear temperature rise experiment of RDX was carried out by differential scanning calorimeter under different heating rate conditions.The kinetic calculation of RDX thermal decomposition curve was carried out by Kissinger and Ozawa methods,respectively,and the thermal analysis software was used to calculate the parameters such as self-accelerating decomposition temperature.The results show that the initial decomposition temperature range,decomposition peak temperature range,and decomposition completion temperature range of RDX are 208.4-214.2,225.7-239.3 and 234.0-252.4℃,respectively,and the average decomposition enthalpy is 362.9 J·g^-1.Kissinger method was used to calculate the DSC experimental data of RDX,the apparent activation energy obtained is 190.8 kJ·mol^-1,which is coincident with the results calculated by Ozawa method at the end of the reaction,indicating that the apparent activation energy calculated by the two methods is relatively accurate.When the packaging mass values are 1.0,2.0 and 5.0 kg,respectively,the self-accelerating decomposition temperatures are 97.0,93.0 and 87.0℃,respectively,indicating that with the increase of packaging mass,the self-accelerating decomposition temperature gradually decreases,and the risk increases accordingly.
文摘The differential scanning calorimetric (DSC)curves of the mitochondria isolated from two varieties of sporophyte cytoplasmic male sterile and their fertile lines of Yie Bai and Ma Xie type rice have been determined. The curves show that the energy is released continuously as temperature rise to 70℃. Some thermodynamic and kinetic parameters of the energy release of the mitochondria have been obtained. The presented results showed that the mitochondria from cytoplasmic male sterile rice released more heat and they had higher energy barrier, less rate, and more complicated mechanism than that of their fertile lines in the energy release process.
文摘Background:Differential scanning calorimetry as a method of investigating and monitoring the kinetics of herbal medicinal plants.Some instrumental and experimental aspects are discussed.Methods:A brief survey is made of herbal medicinal plants and results of differential scanning calorimetry studies are reviewed and this discussion is presented the effects of the instrumental conditions like heating rate and the sample conditions like sample particle size,sample mass,sample purity,sample stability in the melting region and property of impurities.Conclusion:This study suggests that application of differential scanning calorimetry to study the interpretation on herbal medicinal drugs.
文摘A new differential equation was derived from the modified first-order kinetic model to describe the polymer crystallization processes. The crystallization experiments were carried out by means of DSC. Poly (ethylene terephthalate) resins were selected as the samples containing different catalysts. The relationships between the parameters obtained from the known Avrami equation and from one in the present paper were discussed. A method for applying the equation to determine the kinetic parameters from a constant heating and a constant cooling curve was proposed.
文摘Differential scanning calorimetry (DSC) is one of the few techniques that allow direct determination of enthalpy values for binding reactions and conformational transitions in biomolecules. It provides the thermody- namics information of the biomolecules which consists of Gibbs free energy, enthalpy and entropy in a straightfor- ward manner that enables deep understanding of the structure function relationship in biomolecules such as the folding/unfolding of protein and DNA, and ligand bindings. This review provides an up to date overview of the applications of DSC in biomolecular study such as the bovine serum albumin denaturation study, the relationship between the melting point of lysozyme and the scanning rate. We also introduce the recent advances of the development of micro-electro-mechanic-system (MEMS) based DSCs.
基金Project (2006BAK04B03) supported by the National Science and Technology Pillar Program during the 11th Five-Year Plan Period of ChinaProject (kjdb200902-7) supported by Doctoral Candidate Innovation Research Support Program of Science & Technology Review, China+1 种基金Project (1960-71131100023) supported by Postgraduate Dissertation Innovation Foundation of Central South University, ChinaProject (ZKJ2009008) supported by Precious Apparatus Opening Center Foundation of Central South University, China
文摘In order to evaluate the spontaneous combustion hazard of sulfide concentrates in storage, three different kinds of sulfide concentrates (sulfur-rich sulfide concentrate, iron sulfide concentrate and copper sulfide concentrate) were obtained from a storage yard in Dongguashan Copper Mine, China. The reaction processes at different heating rates of 5, 10, 15, 20, and 25 ℃/min in air flow from ambient temperature to 1 000 ℃ were studied by TG-DTG-DSC analysis. By the peak temperatures of DTG curves, the whole reaction process for each sample was divided into different stages, and the corresponding apparent activation energies were calculated by the Ozawa-Flynn-Wall method. It is found that the reaction process of each sample is considerably complex; the apparent activation energy values change from 36 to 160 kJ/mol in different temperature ranges; sulfur-rich sulfide and iron sulfide concentrates have lower apparent activation energy than copper sulfide concentrate below 150 ℃; so they are more inclined to cause spontaneous combustion at ambient temperature.
基金The National Natural Science Foundation of China(No.50778057)
文摘A kind of neat asphalt and three kinds of diatomite asphalt are tested using differential scanning calorimetry(DSC). The anti-cracking mechanism of diatomite asphalt is analyzed by DSC and the thermal stress restrained specimen test(TSRST) of the asphalt mixtures. The results show that the low temperature performance of diatomite asphalt is better than that of neat asphalt. The glass transition temperature can reflect the low temperature performance of the diatomite asphalt better and has a good relationship with breaking temperatures. Besides, the TSRST, the bending test, the compressing test and the contraction coefficient test are used to study the low temperature performance of the diatomite asphalt mixture. The results prove that the low temperature performance of the diatomite asphalt mixture is better than that of the neat asphalt mixture. The critical bending strain energy density and the compressing strain energy density of the diatomite asphalt mixture are greater than those of the neat asphalt mixture. After adding diatomite to the asphalt mixture, the contraction coefficient is reduced. Based on the above results, the anti-cracking mechanism of the diatomite asphalt mixture is analyzed from the angle of contraction performance and breaking energy.
基金The National Natural Science Foundation of China(No.50876022)
文摘A water-TiO2nanofluid with a weight fraction of 5% and an average particle size of 75 nm is used to investigate the effect of TiO2 nanoparticles on the crystallization and melting behaviors of deionized water by using differential scanning calorimetry(DSC)at four different cooling rates,3,5,7,9 ℃/min.The DSC experimental results show that the water-TiO2 nanofluid has a lower supercooling degree and a faster crystallization rate than the deionized water.With the increase in the cooling rate,the influence of the TiO2 nanoparticles on the supercooling degree of the deionized water becomes greater,but on the crystallization rate it turns lower.During the melting process,compared with the deionized water,the water-TiO2 nanofluid has a lower melting temperature,a less latent heat and a higher melting rate.
基金Project(2012CB619500)supported by the National Basic Research Program of China
文摘The precipitation kinetics of 2519 A aluminum alloy after different cold rolling reductions before aging was investigated by hardness test and differential scanning calorimetry(DSC). The activation energy was calculated according to DSC curves using single heating rate method. The microstructures of as-rolled and peak-aged alloys were observed by transmission electron microscopy(TEM). The result shows that the age hardenability reduces and the activation energy rises with increasing the reduction from 7% to 40%. Nonuniform dislocations are found in as-rolled alloy and inhomogeneous distribution of θ′ phase is revealed in peak-aged alloy when the reduction is 15%. The inhomogeneous distribution of θ′ phase may be related to the age hardenability reducing and activation energy rising.
基金Project supported by"863"Project (2006AA03Z532)the National Natural Science Foundation of China (NSFC 50341050)
文摘The influence of rare earth (RE) elements on the solidification process and eutectic transformation and mechanical properties of the high-V type cast, high-speed steel roll was studied. Test materials with different RE additions were prepared on a horizontal centrifugal casting machine. The solidification process, eutectic structure transformation, carbide morphology, and the elements present, were all investigated by means of differential scanning calorimetry (DSC) and scanning electron microscopy energy dispersive spectrometry (SEM-EDS). The energy produced by crack initiation and crack extension was analyzed using a digital impact test machine. It was found that rare earth elements increased the tensile strength of the steel by inducing crystallization of earlier eutectic γ-Fe during the solidification process, which in turn increased the solidification temperature and thinned the dendritic grains. Rare earth elements with large atomic radius changed the lattice parameters of the MC carbide by forming rare earth carbides. This had the effect of dispersing longpole M C carbides to provide carbide grains, thereby, reducing the formation of the gross carbide and making more V available, to increase the secondary hardening process and improve the hardness level. The presence of rare earth elements in the steel raised the impact toughness by changing the mechanism of MC carbide formation, thereby increasing the crack initiation energy.
文摘In the dry-sliding process of the woven self-lubricating liner which is used in the self-lubricating spherical plain bearing, the friction heat plays an important role in the tribological performances of the liner. It has important value to study on the relationship between tribological performances of the liner and the friction heat. Unforttmately, up to now, published work on this relationship is quite scarce. Therefore, the effect of friction heat on the tribological performances of the liner was investigated in the present work. The tribological behaviors of the liner were evaluated by using the high temperature end surface wear tester. Scanning electron microscopy (SEM) was utilized to examine the morphologies of worn surfaces of the liner and study the failure modes. Differential scanning calorimetry (DSC) measurement and X-ray diffraction (XRD) analysis were performed to study the behaviors of the wear debris. The temperature rise on the worn surface was calculated according to classical models. SEM observation shows that the dominating wear mechanism for the liner is mainly affected by friction shear force, contact pressure and friction heat. Higher fusion heat for the wear debris than that for the pure polytetrafluroethylene (PTFE) indicates that the PTFE is the main portion of the wear debris, and, the PTFE in the wear debris shows a higher crystallisation degree owing to the effects of friction shear force and the friction heat. Combining the calculated temperature rise results with the wear rate of the liner, it can be concluded that the effects of temperature rise o n the tribological performances of the liner become more obvious when the temperature rise exceeds the glass transition temperature (Tg) of the PTFE. The wear resistance of the liner deteriorates dramatically when the temperature rise approaches to the melting point (Ton) of the PTFE. The tribological performances of the liner can be improved when the temperature rise exceeds Tg but is far lower than Ton- The present study on the relationship between the temperature rise and the tribological performances of the liner may provide the basis for further understanding of the wear mechanisms of the liner as well as the relationship between the formation of the PTFE transfer film and the friction heat during the dry-sliding of the Finer.
基金Supported by the Natural Science Foundation of Zhejiang Province(LY15B060006)the National Natural Science Foundation of China(21104066)the Zhejiang Province Public Technology Research and Industrial Grant(2012C21078)
文摘Bio-sourced nylon 69,one of promising engineering plastics,has a great potential in developing sustainable technology and various commercial applications.Isothermal and nonisothermal crystallization kinetics of nylon 69 is a base to optimize the process conditions and establish the structure–property correlations for nylon 69,and it is also highly bene ficial for successful applications of nylon products in industry.Isothermal and nonisothermal crystallization kinetics has been investigated by differential scanning calorimetry for nylon 69,bio-sourced even–odd nylon.The isothermal crystallization kinetics has been analyzed by the Avrami equation,the calculated Avrami exponent at various crystallization temperatures falls into the range of 2.28 and 2.86.In addition,the Avrami equation modi fied by Jeziorny and the equation suggested by Mo have been adopted to study the nonisothermal crystallization.The activation energies for isothermal and nonisothermal crystallization have also been determined.The study demonstrates that the crystallization model of nylon 69 might be a twodimensional(circular)growth at both isothermal and nonisothermal crystallization conditions.Furthermore,the value of the crystallization rate parameter(K)decreases signi ficantly but the crystallization half-time(t1/2)increases with the increase of the isothermal crystallization temperature.To nonisothermal crystallization,the crystallization rate increases as the cooling rate increases according to the analysis of Jeziorny's theory.The results of Mo's theory suggest that a faster cooling rate is required to reach a higher relative degree of crystallinity in a unit of time,and crystallization rate decreases when the relative degree of crystallinity increases at nonisothermal crystallization conditions.
基金Supported by the Research Fund of Gaziosmanpasa University (No.2003/42).
文摘Stearic acid (67.83℃) and myristic acid (52.32℃) have high melting temperatures that can limit their use as phase change material (PCM) in low temperature solar heating applications such as solar space and greenhouse heating in regard to climatic requirements. However, their melting temperatures can be adjusted to a suitable value by preparing a eutectic mixture of the myristic acid (MA) and the stearic acid (SA). In the present study, the thermal analysis based on differential scanning calorimetry (DSC) technique shows that the mixture of myristic acid (MA) and stearic acid (SA) in the respective composition (by mass) of 64% and 36% forms a eutectic mixture having melting temperature of 44.13℃ and the latent heat of fusion of 182.4J·g-1. The thermal energy storage characteristics of the MA-SA eutectic mixture filled in the annulus of two concentric pipes were also experimentally established. The heat recovery rate and heat charging/discharging fractions were determined with respect to the change in the mass flow rate and the inlet temperature of heat transfer fluid. Based on the results obtained by DSC analysis and by the heat charg- ing/discharging processes of the PCM, it can be concluded that the MA-SA eutectic mixture is a potential material for low temperature thermal energy storage applications in terms of its thermo-physical and thermal characteristics.
基金Supported by the Science and Technology Council of Jilin Province(No 20020337)
文摘Polyamide 1010 (PA1010)/thermoplastie poly (ether urethane) elastomer (ether-based TPU) blends were prepared via melt extrusion. The crystallization kinetics and melting behavior of PA1010/ether-based TPU blends were systematically investigated using differential scanning calorimetry. The crystallization kinetics results show that the addition of ether-based TPU hinders the crystallization of PA1010, and the hindrance effect increases with the increase of the concentration of ether-based TPU. Both pure PA1010 and PA1010/ether-based TPU blends exhibit double melting peaks in the process of nonisothermal crystallization. The double melting peaks change differently with the variation of cooling rate and blend composition. The cooling rate only influences the lower melting peak; however, the blend composition influences not only the lower melting peak but also the higher melting peak. The reason for the phenomenon must be the interaction between the two compositions.
基金Project(51374251)supported by the National Natural Science Foundation of China
文摘A series of low-temperature phase transitions of sodium aluminate solutions were studied by differential scanning calorimetry (DSC) and Raman spectroscopy. The results indicate that NaOH concentration is a primary impact factor for the binary eutectic point and ice melting temperature of sodium aluminate solutions with low NaOH concentration. In addition, the phase transition process of sodium aluminate solutions with low NaOH concentration from 123.15 to 283.15 K is divided into four steps: non-crystal to crystal, ternary eutectic reaction, binary eutectic reaction and ice melt. The projection phase diagram of NaOH-Al(OH)3-H2O system at low temperature was plotted, in which the ternary eutectic temperature for sodium aluminate solutions is 183.15 K.
基金funding of this work by a scholarship of the German State of Mecklenburg-Vorpommern via University of Rostock,Interdisciplinary Faculty
文摘The precipitation behaviour during cooling from solution annealing of high alloyed 7049A aluminium alloy was investigated, covering the complete cooling-rate-range of technical interest. This ranges from slow cooling rates close to equilibrium up to rates above complete supersaturation and is covering seven orders of magnitude in cooling rate (0.0005 to 5000 K/s). The continuous cooling precipitation behaviour of 7049A alloy was recorded by combining different differential scanning calorimetry (DSC) techniques and microstructure analysis by SEM and Vickers hardness testing. The high alloyed, high strength and quench sensitive wrought aluminium alloy 7049A was investigated during quenching from solution annealing by conventional DSC in the cooling rate range of 0.0005 to 4 K/s. In this range at least two exothermal precipitation reactions were observed: a high temperature reaction in a narrow temperature interval of 450-430℃, and a low temperature reaction in a broad temperature interval down to about 200 ℃. Intensities of both reactions decreased with increasing cooling rate. Quenching from solution annealing with rates up to 1000 K/s was investigated by differential fast scanning calorimetry (DFSC) and the differential reheating method (DRM). A critical quenching rate to suppress all precipitation reactions of 100-300 K/s was been determined.
文摘The effects of aging temperature and time on the hardness and impact toughness of a copper-bearing high-strength low-carbon steel were investigated. The hardness of the aged samples reached maxima after 1 h and 5 h of aging at 500 and 450℃, respectively; this increase in hardness was followed by a decrease in hardness until a temperature of 700℃, at which secondary hardening was observed. The impact toughness of the aged steel was found to be higher for 5 h of aging. Transmission electron microscopy confirmed the presence of carbide and copper precipitates; also, the secondary hardening could be the result of the transformation of austenite(formed in the aging treatment) to martensite. Differential scanning calorimetry of the steel was performed to better understand the precipitation behavior. The results revealed that the precipitation of the steel exhibited two significant stages of copper precipitate nucleation and coarsening of the precipitates, with corresponding activation energies of 49 and 238 kJ·mol^-1, respectively.
基金Scientific and Technological Project of Hubei Province(No.2002AA105A01)
文摘Acetanilide, adipic acid and potassium hydrogen phthalate were chosen as nucleating agents of polyvinyl chloride(PVC), and their effects on PVC crystallization were studied by differential scanning calorimetry, wide angle X-ray diffraction and fourier transform infrared spectroscopy. The experimental results indicate that all of the three additives are compatible with PVC to some extent, but adipic acid's compatibility with PVC is less satisfactory. The three additives can improve PVC crystallinity, and acetanilide can decrease PVC glass transition temperature(T)and narrow PVC melting range, while adipic acid and potassium hydrogen phthalate rise T of PVC and widen its melting range. All additives do not affect PVC crystal system and all g samples are in orthorhombic system. All additives can improve (200), (110), (210) and (201, 111) planes growing. Moreover, acetanilide and adipic acid can shrink PVC spacings and improve the crystal perfection of PVC, but potassium hydrogen phthalate swells spacings and reduces the perfection of PVC crystal.