To eliminate oscillation and overbounding of finite element solutions of classical heat conduction equation, the author and Xiao have put forward two new concepts of monotonies and have derived and proved several crit...To eliminate oscillation and overbounding of finite element solutions of classical heat conduction equation, the author and Xiao have put forward two new concepts of monotonies and have derived and proved several criteria. This idea is borrowed here to deal with generalized conduction equation and finite element criteria for eliminating oscillation and overbounding are also presented. Some new and useful conclusions are drawn.展开更多
Due to the fact that the fourth-order partial differential equation (PDE) for noise removal can provide a good trade-off between noise removal and edge preservation and avoid blocky effects often caused by the secon...Due to the fact that the fourth-order partial differential equation (PDE) for noise removal can provide a good trade-off between noise removal and edge preservation and avoid blocky effects often caused by the second-order PDE, a domain-based fourth-order PDE method for noise removal is proposed. First, the proposed method segments the image domain into two domains, a speckle domain and a non-speckle domain, based on the statistical properties of isolated speckles in the Laplacian domain. Then, depending on the domain type, different conductance coefficients in the proposed fourth-order PDE are adopted. Moreover, the frequency approach is used to determine the optimum iteration stopping time. Compared with the existing fourth-order PDEs, the proposed fourth-order PDE can remove isolated speckles and keeps the edges from being blurred. Experimental results show the effectiveness of the proposed method.展开更多
The classical heat conduction equation is derived from the assumption that the temperature increases immediately after heat transfer, but the increase of temperature is a slow process, so the memory-dependent heat con...The classical heat conduction equation is derived from the assumption that the temperature increases immediately after heat transfer, but the increase of temperature is a slow process, so the memory-dependent heat conduction model has been reconstructed. Numerical results show that the solution of the initial boundary value problem of the new model is similar to that of the classical heat conduction equation, but its propagation speed is slower than that of the latter. In addition, the propagation speed of the former is also affected by time delay and kernel function.展开更多
The scientific article examines the physical and mechanical properties of raw cotton stored in buntings in cotton palaces. Because during the storage of raw cotton in bunts, some of its properties deteriorate, some im...The scientific article examines the physical and mechanical properties of raw cotton stored in buntings in cotton palaces. Because during the storage of raw cotton in bunts, some of its properties deteriorate, some improvements. Therefore, the mathematical modeling of storage conditions of raw cotton in bunts and the physical and mechanical conditions that occur in it is of great importance. In the developed mathematical model, the main factor influencing the physical and mechanical properties of raw cotton is the change in temperature. Due to the temperature, kinetic and biological processes accumulated in the raw cotton in Bunt, it can spread over a large surface, first in a small-local state, over time with a nonlinear law. As a result, small changes in temperature lead to a qualitative change in physical properties. In determining the law of temperature distribution in the raw cotton in Bunt, Laplace’s differential equation of heat transfer was used. The differential equation of heat transfer in Laplace’s law was replaced by a system of ordinary differential equations by approximation. Conditions are solved in MAPLE-17 program by numerical method. As a result, graphs of temperature changes over time in raw cotton were obtained. In addition, the table shows the changes in density, pressure and mass of cotton, the height of the bun. As the density of the cotton raw material increases from the top layer of the bunt to the bottom layer, an increase in the temperature in it has been observed. This leads to overheating of the bottom layer of cotton and is the main reason for the deterioration of the quality of raw materials.展开更多
文摘To eliminate oscillation and overbounding of finite element solutions of classical heat conduction equation, the author and Xiao have put forward two new concepts of monotonies and have derived and proved several criteria. This idea is borrowed here to deal with generalized conduction equation and finite element criteria for eliminating oscillation and overbounding are also presented. Some new and useful conclusions are drawn.
基金The National Natural Science Foundation of China(No.60972001)the National Key Technology R&D Program of China during the 11th Five-Year Period(No.2009BAG13A06)
文摘Due to the fact that the fourth-order partial differential equation (PDE) for noise removal can provide a good trade-off between noise removal and edge preservation and avoid blocky effects often caused by the second-order PDE, a domain-based fourth-order PDE method for noise removal is proposed. First, the proposed method segments the image domain into two domains, a speckle domain and a non-speckle domain, based on the statistical properties of isolated speckles in the Laplacian domain. Then, depending on the domain type, different conductance coefficients in the proposed fourth-order PDE are adopted. Moreover, the frequency approach is used to determine the optimum iteration stopping time. Compared with the existing fourth-order PDEs, the proposed fourth-order PDE can remove isolated speckles and keeps the edges from being blurred. Experimental results show the effectiveness of the proposed method.
文摘The classical heat conduction equation is derived from the assumption that the temperature increases immediately after heat transfer, but the increase of temperature is a slow process, so the memory-dependent heat conduction model has been reconstructed. Numerical results show that the solution of the initial boundary value problem of the new model is similar to that of the classical heat conduction equation, but its propagation speed is slower than that of the latter. In addition, the propagation speed of the former is also affected by time delay and kernel function.
文摘The scientific article examines the physical and mechanical properties of raw cotton stored in buntings in cotton palaces. Because during the storage of raw cotton in bunts, some of its properties deteriorate, some improvements. Therefore, the mathematical modeling of storage conditions of raw cotton in bunts and the physical and mechanical conditions that occur in it is of great importance. In the developed mathematical model, the main factor influencing the physical and mechanical properties of raw cotton is the change in temperature. Due to the temperature, kinetic and biological processes accumulated in the raw cotton in Bunt, it can spread over a large surface, first in a small-local state, over time with a nonlinear law. As a result, small changes in temperature lead to a qualitative change in physical properties. In determining the law of temperature distribution in the raw cotton in Bunt, Laplace’s differential equation of heat transfer was used. The differential equation of heat transfer in Laplace’s law was replaced by a system of ordinary differential equations by approximation. Conditions are solved in MAPLE-17 program by numerical method. As a result, graphs of temperature changes over time in raw cotton were obtained. In addition, the table shows the changes in density, pressure and mass of cotton, the height of the bun. As the density of the cotton raw material increases from the top layer of the bunt to the bottom layer, an increase in the temperature in it has been observed. This leads to overheating of the bottom layer of cotton and is the main reason for the deterioration of the quality of raw materials.