The three-body distorted=wave Born approximation has been used to calculate the (e, 2e) triple differential cross sections (TDCSs) of Cu+ (3p) in different kinematical variables in coplanar asymmetric geometry....The three-body distorted=wave Born approximation has been used to calculate the (e, 2e) triple differential cross sections (TDCSs) of Cu+ (3p) in different kinematical variables in coplanar asymmetric geometry. The angles 4°, 10° and 20° were selected as the scattering electron angles. Under high incident energy (≥500 eV) and high asymmetric detection energy, the binary peaks showed abnormal splits. Such abnormal splits have not been observed in atomic target and outer valence orbitals of ionic target, which indicates that an (e, 2e) process for inner valence orbitals of ionic target would be more complicated than outer valence orbitals. Furthermore, some pronounced peaks appeared at certain ejected angles. We considered that these pronounced peaks are probably related to one kind of double-binary collision.展开更多
We investigate the differential cross sections (DCS) of elastic electron scattering from CH4, CF4 and SF6 at six impact energies in a range of 100 700eV by employing the independent atom model (IAM) together with ...We investigate the differential cross sections (DCS) of elastic electron scattering from CH4, CF4 and SF6 at six impact energies in a range of 100 700eV by employing the independent atom model (IAM) together with the relativistic partial waves. The atom is present in an optical potential which is complex, spherically symmetric, and energy dependent. The optical potential of the atom is the sum of the direct static, dynamic polarization, local exchange and modified absorption potentials. The results obtained by using a modified absorption potential show significant improvements on the unmodified absorption potential results. The present results are generally in good agreement with experimental data available. In addition, the present results indicate that the structure of molecule manifests the observable effects on electron- molecule scattering.展开更多
The non-dissociative charge-transfer processes in collisions between O^3+ and H2 are investigated by using the quantum-mechanical molecular-orbital coupled-channel (QMOCC) method. The adiabatic potentials and radia...The non-dissociative charge-transfer processes in collisions between O^3+ and H2 are investigated by using the quantum-mechanical molecular-orbital coupled-channel (QMOCC) method. The adiabatic potentials and radial coupling matrix elements utilized in the QMOCC calculations are obtained with the spin-coupled valence-bond approach. Electronic and vibrational state-selective differential cross sections are presented for projectile energies of 0.1, 1.0 and 10.0eV/u in the H2 orientation angles of 45° and 89°. The electronic and the vibrational state-selective differential cross sections show similar behaviours: they decrease as the scattering angle increases, and beyond a specific angle the oscillating structures appear. Moreover, it is also found that the vibrational state-selective differential cross sections are strongly orientation-dependent, which provides a possibility to determine the orientations of molecule H2 by identifying the vibrational state-selective differential scattering processes.展开更多
The modified Coulomb-Born approximation with and without the internuclear interaction (MCB-NN and MCB) is used to calculate the fully differential cross sections (FDCS) for the single ionization of helium by lOO M...The modified Coulomb-Born approximation with and without the internuclear interaction (MCB-NN and MCB) is used to calculate the fully differential cross sections (FDCS) for the single ionization of helium by lOO MeV/amu C6+ impact. The effects of the internuclear interaction on the FDCS are examined in geometries. The results are compared with experimental data and theoretical predictions from a three-body distorted-wave (3DW) model and a time-dependent close-coupling model. It is shown that the present MCB-NN results are in good agreement with the experiments in the scattering plane and the MCB results qualitatively reproduce the experimental structure outside the scattering plane. In particular, the MCB theory predicts the 'double-peak' structure in the perpendicular plane.展开更多
The three-Coulomb-wave (3C) model is applied to study the single ionization of helium by 2 MeV/amu C6+ impact. Fully differential cross sections (FDCS) are calculated in the scattering plane and the results are c...The three-Coulomb-wave (3C) model is applied to study the single ionization of helium by 2 MeV/amu C6+ impact. Fully differential cross sections (FDCS) are calculated in the scattering plane and the results are compared with experimental data and other theoretical predictions. It is shown that the 3C results of the recoil peak are in very good agreement with experimental observations, and variation of the position of the binary peak with increasing momentum transfer also conforms better to the experimental results. Furthermore, the contributions of different scat- tering amplitudes are discussed. It turns out that the cross sections are strongly influenced by the interference of these amplitudes.展开更多
Fully differential cross sections (FDCS) are calculated within a four-body model for single ionization of helium by C6+ impact at the incident energy of 100 MeV/a.u. (atomic unit). The results are compared with e...Fully differential cross sections (FDCS) are calculated within a four-body model for single ionization of helium by C6+ impact at the incident energy of 100 MeV/a.u. (atomic unit). The results are compared with experimental data and other theoretical predictions. It is shown that our results are in very good agreement with experiment for three small momentum transfers in the scattering plane; however, some significant discrepancies are still present at the largest momentum transfer in both the scattering plane and the perpendicular plane. In actuality, the problem has not been explained by the theory during the last decade. Accordingly, the contributions of different scattering amplitudes to FDCS are analyzed. It is found that for the largest momentum transfer the cross section arising from a destructive interference of the three amplitudes is much smaller than the experimental data. However, the cross section due to the constructive interference of two scattering amplitudes between projectile-ionized electron interaction and projectile-passive electron interaction almost approaches the experimental data.展开更多
The effect of final-state dynamic correlation is investigated for ionization of atomic hydrogen by 75-keV proton impact by analyzing double differential cross sections.The final state is represented by a continuum cor...The effect of final-state dynamic correlation is investigated for ionization of atomic hydrogen by 75-keV proton impact by analyzing double differential cross sections.The final state is represented by a continuum correlated wave(CCW-PT)function which accounts for the interaction between the projectile and the target nucleus(PT interaction).The correlated final state is nonseparable solutions of the wave equation combining the dynamics of the electron motion relative to the target and projectile,satisfying the Redmond’s asymptotic conditions corresponding to long range interactions.The transition matrix is evaluated using the CCW-PT function and the undistorted initial state.Both the correlation effects and the PT interaction are analyzed by the present calculations.The convergence of the continuous correlated final state is examined carefully.Our results are compared with the absolute experimental data measured by Laforge et al.[Phys.Rev.Lett.103,053201(2009)]and Schulz et al.[Phys.Rev.A 81,052705(2010)],as well as other theoretical models(especially the results of the latest non perturbation theory).We have shown that the dynamic correlation plays an important role in the ionization of atomic hydrogen by proton impact.While overall agreement between theory and the experimental data is encouraging,detailed agreement is still lacking.However,such an analysis is meaningful because it provides valuable information about the dynamical correlation and PT interaction in the CCW-PT theoretical model.展开更多
A dynamically screened three-Coulomb-wave (DS3C) method is applied to study the single ionization of magnesium by electron impact. Triple differential cross sections (TDCS) are calculated in doubly symmetric geome...A dynamically screened three-Coulomb-wave (DS3C) method is applied to study the single ionization of magnesium by electron impact. Triple differential cross sections (TDCS) are calculated in doubly symmetric geometry at incident energies of 13.65, 17.65, 22.65, 27.65, 37.65, 47.65, 57.65, and 67.65 eV. Comparisons are made with experimental data and theoretical predictions from a three-Coulomb-wave function (3C) approach and distorted-wave Born approximation (DWBA). The overall agreement between the predictions of the DS3C model and the DWBA approach with the experimen- tal data is satisfactory.展开更多
The time-dependent wave-packet method was employed to calculate the first full-dimensional state-to-state differential cross sections (DCS) for the title reaction with D2O in the ground and the first symmetric (100...The time-dependent wave-packet method was employed to calculate the first full-dimensional state-to-state differential cross sections (DCS) for the title reaction with D2O in the ground and the first symmetric (100) and asymmetric stretching (001) excited states. The calculated DCSs for these three initial states are strongly backward peaked at low collision energies. With the increase of collision energy, these DCSs become increasingly broader with the peak position shifting gradually to a smaller angle, consistent with the fact that the title reaction is a direct reaction via an abstraction mechanism. It is found that the (100) and (001) states not only have roughly the same integral cross sections, but also have essentially identical DCS, which are very close to that for the ground state at the same total energy of reaction. The reaction produces a small fraction of OD in the v=1 state, with the population close to the relative reactivity between the ground and vibrationally excited states, therefore confirming the experimental result of Zare et al. and the local mode picture [J. Phys. Chem. 97, 2204 (1993)]. Unexpectedly, the stretching excitation reduces the rotation excitation of product HD at the same total energy.展开更多
We make a detailed study on the angular differential cross sections of positron–hydrogen collisions by using the momentum-space coupled-channels optical(CCO) method for incident energies below the H ionization thre...We make a detailed study on the angular differential cross sections of positron–hydrogen collisions by using the momentum-space coupled-channels optical(CCO) method for incident energies below the H ionization threshold. The target continuum and the positronium(Ps) formation channels are included in the coupled-channels calculations via a complex equivalent-local optical potential. The critical points, which show minima in the differential cross sections, as a function of the scattering angle and the incident energy are investigated. The resonances in the angular differential cross sections are reported for the first time in this energy range. The effects of the target continuum and the Ps formation channels on the different cross sections are discussed.展开更多
This paper presents the fully differential cross sections (FDCS) for 102eV electron impact single ionization of helium for both the coplanar and perpendicular plane asymmetric geometries within the framework of dyna...This paper presents the fully differential cross sections (FDCS) for 102eV electron impact single ionization of helium for both the coplanar and perpendicular plane asymmetric geometries within the framework of dynamically screened three-Coulomb-wave theory. Comparisons are made with the experimental data and those of the three-Coulomb wave function model and second-order distorted-wave Born method. The angular distribution and relative heights of the present FDCS is found to be in very good agreement with the experimental data in the perpendicular plane geometry. It is shown that dynamical screening effects are significant in this geometry. Three-body coupling is expected to be weak in the coplanar geometry, although the precise absolute value of the cross section is still sensitive to the interaction details.展开更多
A complex optical model potential modified by incorporating the concept of bonded atom, which takes into consideration the overlapping effect of electron clouds between atoms in a molecule, is firstly employed to calc...A complex optical model potential modified by incorporating the concept of bonded atom, which takes into consideration the overlapping effect of electron clouds between atoms in a molecule, is firstly employed to calculate the absolute differential, elastic integrated and moment transfer cross sections for electron scattering by OCS over the incident energy range from 200 to 1000 eV using the additivity rule model at Hartree-Fock level. The calculated results are compared with those obtained by experiment and other theories wherever available, and good agreement is obtained over a wide energy range. It is shown that the additivity rule model together with the modified potential is completely suitable for calculating the absolute differential, elastic integrated and moment transfer cross sections of electron scattering by molecules such as OCS.展开更多
The four-body model has been used to calculate the fully differential cross-sections (FDCS) for the single ionization of helium by 100 MeV/amu Ca^+ impact in geometries. By comparing with experimental data and othe...The four-body model has been used to calculate the fully differential cross-sections (FDCS) for the single ionization of helium by 100 MeV/amu Ca^+ impact in geometries. By comparing with experimental data and other theories, we find the results of four-body model are in very good agreement in the scattering plane, but poor agreement out of the scattering plane. Accordingly, the contributions of different scattering amplitudes to FDCS are analyzed. It is found that the cross sections due to the interference of the scattering amplitudes between projectile-target nucleus interaction and projectile-ejected electron interaction almost tend to experimental results around the recoil region in geometries. In particular in the perpendicular plane, the cross section originating from interference of the scattering amplitudes between projectile-target nucleus and projectile-ejected electron interactions yields an experimental double-peak structure in the angular distribution. However, this feature could not be presented by the interference of the three amplitudes. Thus, the failure of the fourbody model predicting the feature in this geometry may be attributed to an inappropriate weighting of the three amplitudes.展开更多
The triple-differential cross section (TDCS) for the (e,2e) ionization of a hydrogen molecule is calculated using the molecule distorted-wave Born approximation (MDWBA). Distorted waves are obtained by solving m...The triple-differential cross section (TDCS) for the (e,2e) ionization of a hydrogen molecule is calculated using the molecule distorted-wave Born approximation (MDWBA). Distorted waves are obtained by solving momentum-space coupled-channel Lippmann-Schwinger equations, including the ground state and the lowest-lying electronic state of b3Σu . TDCSs at the incident energy 100 eV in coplanar asymmetric geometry are reported. The present calculations are compared with the available experimental measurements and the theoretical results.展开更多
The H+H2 reaction is the simplest chemical reaction system and has long been the prototype model in the study of reaction dynamics. Here we report a high resolution experimental investigation of the state-to-state rea...The H+H2 reaction is the simplest chemical reaction system and has long been the prototype model in the study of reaction dynamics. Here we report a high resolution experimental investigation of the state-to-state reaction dynamics in the H+HD→H2+D reaction by using the crossed molecular beams method and velocity map ion imaging technique at the collision energy of 1.17 eV. D atom products in this reaction were probed by the near threshold 1+1'(vacuum ultraviolet+ultraviolet) laser ionization scheme. The ion image with both high angular and energy resolution were acquired. State-to-state differential cross sections was accurately derived. Fast forward scattering oscillations, relating with interference effects in the scattering process, were clearly observed for H2 products at H2(v'=0,j'=1) and H2(v'=0,j'=3) rovibrational levels. This study further demonstrates the importance of measuring high-resolution differential cross sections in the study of state-to-state reaction dynamics in the gas phase.展开更多
A study of single-electron capture(SEC) in 18-240 keV O^(6+)-Ne collisions has been conducted employing a combination of experimental and theoretical methodologies.Utilizing a reaction microscope,state-selective SEC c...A study of single-electron capture(SEC) in 18-240 keV O^(6+)-Ne collisions has been conducted employing a combination of experimental and theoretical methodologies.Utilizing a reaction microscope,state-selective SEC cross sections and projectile scattering angle distributions were obtained.The translational energy spectra for SEC reveal the prevailing capture into n=3 states of the projectile ion,with a minor contribution from n=4 states.Notably,as the projectile's energy increases,the relative contribution of SEC n=4 states increases while that of SEC n=3 states diminishes.Furthermore,we computed state-selective relative cross sections and angular differential cross sections employing the classical molecular Coulomb over-the-barrier model(MCBM) and the multichannel Landau-Zener(MCLZ) model.A discernible discrepancy between the state-selective cross sections from the two theoretical models is apparent for the considered impact energies.However,regarding the angular differential cross sections,an overall agreement was attained between the current experimental results and the theoretical results from the MCLZ model.展开更多
The reagent rotational excitation effect on the stereodynamics of H+LiF→HF+Li is calcu-lated by means of the quasi-classical trajectory method on the Aguado-Paniagua2-potential energy surface (AP2-PES) constructe...The reagent rotational excitation effect on the stereodynamics of H+LiF→HF+Li is calcu-lated by means of the quasi-classical trajectory method on the Aguado-Paniagua2-potential energy surface (AP2-PES) constructed by Aguado et al. [J. Chem. Phys. 106, 1013 (1997)]. The angular distributions of vector correlations between products and reactants, P(?r) and P(Φr) are presented. Meanwhile, the four polarization-dependent generalized differential cross sections are computed. The results indicate that the reagent rotational quantum num-bers have impact on the vector properties of the title reaction. In addition, the reaction probability has been calculated as well.展开更多
Employing the quasi-classical trajectory method and the potential energy surface of Panda and Sathyamurhy [Panda A N and Sathyamurthy N 2004 J. Chem. Phys. 121 9343], the effect of the reagent vibration on vector corr...Employing the quasi-classical trajectory method and the potential energy surface of Panda and Sathyamurhy [Panda A N and Sathyamurthy N 2004 J. Chem. Phys. 121 9343], the effect of the reagent vibration on vector correlation of the ion-molecule reactions D- + H2 and H- + D2 is studied at a collision energy of 35.7 kcal/mol. Four generalized polarization-dependent differential cross sections (2π/σ) (dσ00/dωt), (2π/σ) (dσ20/dσ20), (27π/σ) (dσ22+/dwt), and (2π/σ)(dπ/σ) are presented in the centre-of-mass reference frame, separately. At the same time, the effects on the product angular distributions P(θr), P(~r) and P(Oφ) of the title reactions are also analysed. The calculated results show that the scattering tendencies of the product HD, the alignment and the orientation of j^1 sensitively depend on reagent molecule vibration.展开更多
The (e, 2e) triple differential cross sections (TDCSs) of Ar (3s) are calculated by using distorted-wave Born approx- imation under coplanar asymmetric geometry. The incident electron energy is 113.5 eV, and the...The (e, 2e) triple differential cross sections (TDCSs) of Ar (3s) are calculated by using distorted-wave Born approx- imation under coplanar asymmetric geometry. The incident electron energy is 113.5 eV, and the scattering electron angle 01 is -15~. The ejected electron energy is set at 10 eV, 7.5 eV, 5 eV, and 2 eV, respectively. The polarization effects have been discussed and the polarization potential Vpol changing from a second-order to a fourth-order term has been analyzed. Our calculated TDCSs have been compared with reported experimental and theoretical results, and the calculated TDCSs of polarization potential up to the fourth order could give a good fit with experimental results in the binary region, but fail to predict the correct recoil-to-binary ratio in most cases.展开更多
基金supported by Shandong Provincial Natural Science Foundation of China (Grant No. Q2008A07)
文摘The three-body distorted=wave Born approximation has been used to calculate the (e, 2e) triple differential cross sections (TDCSs) of Cu+ (3p) in different kinematical variables in coplanar asymmetric geometry. The angles 4°, 10° and 20° were selected as the scattering electron angles. Under high incident energy (≥500 eV) and high asymmetric detection energy, the binary peaks showed abnormal splits. Such abnormal splits have not been observed in atomic target and outer valence orbitals of ionic target, which indicates that an (e, 2e) process for inner valence orbitals of ionic target would be more complicated than outer valence orbitals. Furthermore, some pronounced peaks appeared at certain ejected angles. We considered that these pronounced peaks are probably related to one kind of double-binary collision.
基金Project supported by the Shanghai Development Foundation from Science and Technology, China (Grant Nos 06JC14082 and 06QA14062), the National Natural Science Foundation of China (Grant No 10535010), and the Knowledge Innovation Project of Chinese Academy of Sciences (Grant No KJXC3-SYW-N2).
文摘We investigate the differential cross sections (DCS) of elastic electron scattering from CH4, CF4 and SF6 at six impact energies in a range of 100 700eV by employing the independent atom model (IAM) together with the relativistic partial waves. The atom is present in an optical potential which is complex, spherically symmetric, and energy dependent. The optical potential of the atom is the sum of the direct static, dynamic polarization, local exchange and modified absorption potentials. The results obtained by using a modified absorption potential show significant improvements on the unmodified absorption potential results. The present results are generally in good agreement with experimental data available. In addition, the present results indicate that the structure of molecule manifests the observable effects on electron- molecule scattering.
基金supported by the National Natural Science Foundation of China (Grant Nos 10574018 and 10574020)
文摘The non-dissociative charge-transfer processes in collisions between O^3+ and H2 are investigated by using the quantum-mechanical molecular-orbital coupled-channel (QMOCC) method. The adiabatic potentials and radial coupling matrix elements utilized in the QMOCC calculations are obtained with the spin-coupled valence-bond approach. Electronic and vibrational state-selective differential cross sections are presented for projectile energies of 0.1, 1.0 and 10.0eV/u in the H2 orientation angles of 45° and 89°. The electronic and the vibrational state-selective differential cross sections show similar behaviours: they decrease as the scattering angle increases, and beyond a specific angle the oscillating structures appear. Moreover, it is also found that the vibrational state-selective differential cross sections are strongly orientation-dependent, which provides a possibility to determine the orientations of molecule H2 by identifying the vibrational state-selective differential scattering processes.
基金Supported by the National Natural Science Foundation of China under Grant No 11274215the Natural Science Foundation of Shanxi Province under Grant No 2010011009
文摘The modified Coulomb-Born approximation with and without the internuclear interaction (MCB-NN and MCB) is used to calculate the fully differential cross sections (FDCS) for the single ionization of helium by lOO MeV/amu C6+ impact. The effects of the internuclear interaction on the FDCS are examined in geometries. The results are compared with experimental data and theoretical predictions from a three-body distorted-wave (3DW) model and a time-dependent close-coupling model. It is shown that the present MCB-NN results are in good agreement with the experiments in the scattering plane and the MCB results qualitatively reproduce the experimental structure outside the scattering plane. In particular, the MCB theory predicts the 'double-peak' structure in the perpendicular plane.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11274215)the Natural Science Foundation of Shanxi Province,China (Grant Nos. 20051008 and 2010011009)the Technology Project of Shanxi Provincial Education Department,China (Grant No. 20111011)
文摘The three-Coulomb-wave (3C) model is applied to study the single ionization of helium by 2 MeV/amu C6+ impact. Fully differential cross sections (FDCS) are calculated in the scattering plane and the results are compared with experimental data and other theoretical predictions. It is shown that the 3C results of the recoil peak are in very good agreement with experimental observations, and variation of the position of the binary peak with increasing momentum transfer also conforms better to the experimental results. Furthermore, the contributions of different scat- tering amplitudes are discussed. It turns out that the cross sections are strongly influenced by the interference of these amplitudes.
基金supported by the National Natural Science Foundation of China(Grant No.11274215)the Natural Science Foundation of Shanxi Province,China(Grants Nos.20051008 and 2010011009)the Technology Project of Shanxi Provincial Education Department,China(Grant No.20111011)
文摘Fully differential cross sections (FDCS) are calculated within a four-body model for single ionization of helium by C6+ impact at the incident energy of 100 MeV/a.u. (atomic unit). The results are compared with experimental data and other theoretical predictions. It is shown that our results are in very good agreement with experiment for three small momentum transfers in the scattering plane; however, some significant discrepancies are still present at the largest momentum transfer in both the scattering plane and the perpendicular plane. In actuality, the problem has not been explained by the theory during the last decade. Accordingly, the contributions of different scattering amplitudes to FDCS are analyzed. It is found that for the largest momentum transfer the cross section arising from a destructive interference of the three amplitudes is much smaller than the experimental data. However, the cross section due to the constructive interference of two scattering amplitudes between projectile-ionized electron interaction and projectile-passive electron interaction almost approaches the experimental data.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11974229 and 11274215)。
文摘The effect of final-state dynamic correlation is investigated for ionization of atomic hydrogen by 75-keV proton impact by analyzing double differential cross sections.The final state is represented by a continuum correlated wave(CCW-PT)function which accounts for the interaction between the projectile and the target nucleus(PT interaction).The correlated final state is nonseparable solutions of the wave equation combining the dynamics of the electron motion relative to the target and projectile,satisfying the Redmond’s asymptotic conditions corresponding to long range interactions.The transition matrix is evaluated using the CCW-PT function and the undistorted initial state.Both the correlation effects and the PT interaction are analyzed by the present calculations.The convergence of the continuous correlated final state is examined carefully.Our results are compared with the absolute experimental data measured by Laforge et al.[Phys.Rev.Lett.103,053201(2009)]and Schulz et al.[Phys.Rev.A 81,052705(2010)],as well as other theoretical models(especially the results of the latest non perturbation theory).We have shown that the dynamic correlation plays an important role in the ionization of atomic hydrogen by proton impact.While overall agreement between theory and the experimental data is encouraging,detailed agreement is still lacking.However,such an analysis is meaningful because it provides valuable information about the dynamical correlation and PT interaction in the CCW-PT theoretical model.
基金supported by the National Natural Science Foundation of China(Grant No.11274215)
文摘A dynamically screened three-Coulomb-wave (DS3C) method is applied to study the single ionization of magnesium by electron impact. Triple differential cross sections (TDCS) are calculated in doubly symmetric geometry at incident energies of 13.65, 17.65, 22.65, 27.65, 37.65, 47.65, 57.65, and 67.65 eV. Comparisons are made with experimental data and theoretical predictions from a three-Coulomb-wave function (3C) approach and distorted-wave Born approximation (DWBA). The overall agreement between the predictions of the DS3C model and the DWBA approach with the experimen- tal data is satisfactory.
基金This work was supported by the National Natural Science Foundation of China (No.21403223, No.21433009, and No.91221301), the Ministry of Science and Technology of China (No.2013CB834601), and the Chinese Academy of Sciences.
文摘The time-dependent wave-packet method was employed to calculate the first full-dimensional state-to-state differential cross sections (DCS) for the title reaction with D2O in the ground and the first symmetric (100) and asymmetric stretching (001) excited states. The calculated DCSs for these three initial states are strongly backward peaked at low collision energies. With the increase of collision energy, these DCSs become increasingly broader with the peak position shifting gradually to a smaller angle, consistent with the fact that the title reaction is a direct reaction via an abstraction mechanism. It is found that the (100) and (001) states not only have roughly the same integral cross sections, but also have essentially identical DCS, which are very close to that for the ground state at the same total energy of reaction. The reaction produces a small fraction of OD in the v=1 state, with the population close to the relative reactivity between the ground and vibrationally excited states, therefore confirming the experimental result of Zare et al. and the local mode picture [J. Phys. Chem. 97, 2204 (1993)]. Unexpectedly, the stretching excitation reduces the rotation excitation of product HD at the same total energy.
基金Project supported by the Nanyang Normal University Science Foundation of China(Grant No.ZX2013017)the National Natural Science Foundation of China(Grant Nos.11174066,61306007,and U1304114)
文摘We make a detailed study on the angular differential cross sections of positron–hydrogen collisions by using the momentum-space coupled-channels optical(CCO) method for incident energies below the H ionization threshold. The target continuum and the positronium(Ps) formation channels are included in the coupled-channels calculations via a complex equivalent-local optical potential. The critical points, which show minima in the differential cross sections, as a function of the scattering angle and the incident energy are investigated. The resonances in the angular differential cross sections are reported for the first time in this energy range. The effects of the target continuum and the Ps formation channels on the different cross sections are discussed.
基金Project supported by the Natural Science Foundation of Shanxi Province,China (Grant No 20051008)the Science Foundation for Returnee of Shanxi Province of China (Grant No 02-16)
文摘This paper presents the fully differential cross sections (FDCS) for 102eV electron impact single ionization of helium for both the coplanar and perpendicular plane asymmetric geometries within the framework of dynamically screened three-Coulomb-wave theory. Comparisons are made with the experimental data and those of the three-Coulomb wave function model and second-order distorted-wave Born method. The angular distribution and relative heights of the present FDCS is found to be in very good agreement with the experimental data in the perpendicular plane geometry. It is shown that dynamical screening effects are significant in this geometry. Three-body coupling is expected to be weak in the coplanar geometry, although the precise absolute value of the cross section is still sensitive to the interaction details.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574039)
文摘A complex optical model potential modified by incorporating the concept of bonded atom, which takes into consideration the overlapping effect of electron clouds between atoms in a molecule, is firstly employed to calculate the absolute differential, elastic integrated and moment transfer cross sections for electron scattering by OCS over the incident energy range from 200 to 1000 eV using the additivity rule model at Hartree-Fock level. The calculated results are compared with those obtained by experiment and other theories wherever available, and good agreement is obtained over a wide energy range. It is shown that the additivity rule model together with the modified potential is completely suitable for calculating the absolute differential, elastic integrated and moment transfer cross sections of electron scattering by molecules such as OCS.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.11274215), the Natural Science Foundation of Shanxi Province, China (No.20051008 and No.2010011009), and the Technology Project of Shanxi Provincial Education Department, China (No.20111011).
文摘The four-body model has been used to calculate the fully differential cross-sections (FDCS) for the single ionization of helium by 100 MeV/amu Ca^+ impact in geometries. By comparing with experimental data and other theories, we find the results of four-body model are in very good agreement in the scattering plane, but poor agreement out of the scattering plane. Accordingly, the contributions of different scattering amplitudes to FDCS are analyzed. It is found that the cross sections due to the interference of the scattering amplitudes between projectile-target nucleus interaction and projectile-ejected electron interaction almost tend to experimental results around the recoil region in geometries. In particular in the perpendicular plane, the cross section originating from interference of the scattering amplitudes between projectile-target nucleus and projectile-ejected electron interactions yields an experimental double-peak structure in the angular distribution. However, this feature could not be presented by the interference of the three amplitudes. Thus, the failure of the fourbody model predicting the feature in this geometry may be attributed to an inappropriate weighting of the three amplitudes.
基金the National Natural Science Foundation of China(Grant No.11174066)the Key Fund Project of Education Department of Sichuan Province,China(Grant No.13ZA0044)
文摘The triple-differential cross section (TDCS) for the (e,2e) ionization of a hydrogen molecule is calculated using the molecule distorted-wave Born approximation (MDWBA). Distorted waves are obtained by solving momentum-space coupled-channel Lippmann-Schwinger equations, including the ground state and the lowest-lying electronic state of b3Σu . TDCSs at the incident energy 100 eV in coplanar asymmetric geometry are reported. The present calculations are compared with the available experimental measurements and the theoretical results.
基金supported by the National Key R&D Program of China (No.2016YFF0200500)the National Natural Science Foundation of China (No.21473173, No.21590802, No.21403207, No.21503206)the Strategic Priority Research Program of Chinese Academy of Sciences (No.XDB17000000)
文摘The H+H2 reaction is the simplest chemical reaction system and has long been the prototype model in the study of reaction dynamics. Here we report a high resolution experimental investigation of the state-to-state reaction dynamics in the H+HD→H2+D reaction by using the crossed molecular beams method and velocity map ion imaging technique at the collision energy of 1.17 eV. D atom products in this reaction were probed by the near threshold 1+1'(vacuum ultraviolet+ultraviolet) laser ionization scheme. The ion image with both high angular and energy resolution were acquired. State-to-state differential cross sections was accurately derived. Fast forward scattering oscillations, relating with interference effects in the scattering process, were clearly observed for H2 products at H2(v'=0,j'=1) and H2(v'=0,j'=3) rovibrational levels. This study further demonstrates the importance of measuring high-resolution differential cross sections in the study of state-to-state reaction dynamics in the gas phase.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11934004,12064040,and 11974358)the National Key Research and Development Program of China(Grant No.2022YFA1602500)Strategic Key Research Program of the Chinese Academy of Sciences(Grant No.XDB34020000)。
文摘A study of single-electron capture(SEC) in 18-240 keV O^(6+)-Ne collisions has been conducted employing a combination of experimental and theoretical methodologies.Utilizing a reaction microscope,state-selective SEC cross sections and projectile scattering angle distributions were obtained.The translational energy spectra for SEC reveal the prevailing capture into n=3 states of the projectile ion,with a minor contribution from n=4 states.Notably,as the projectile's energy increases,the relative contribution of SEC n=4 states increases while that of SEC n=3 states diminishes.Furthermore,we computed state-selective relative cross sections and angular differential cross sections employing the classical molecular Coulomb over-the-barrier model(MCBM) and the multichannel Landau-Zener(MCLZ) model.A discernible discrepancy between the state-selective cross sections from the two theoretical models is apparent for the considered impact energies.However,regarding the angular differential cross sections,an overall agreement was attained between the current experimental results and the theoretical results from the MCLZ model.
基金ACKNOWLEDGMENTS This work was supported by the Jilin University, China (No.419080106440), the Chinese National Fusion Project for ITER (No.2010GB104003), and the National Natural Science Foundation of China (No.10974069). Many thanks to Prof. Ke-li Han for providing the stereodynamics program.
文摘The reagent rotational excitation effect on the stereodynamics of H+LiF→HF+Li is calcu-lated by means of the quasi-classical trajectory method on the Aguado-Paniagua2-potential energy surface (AP2-PES) constructed by Aguado et al. [J. Chem. Phys. 106, 1013 (1997)]. The angular distributions of vector correlations between products and reactants, P(?r) and P(Φr) are presented. Meanwhile, the four polarization-dependent generalized differential cross sections are computed. The results indicate that the reagent rotational quantum num-bers have impact on the vector properties of the title reaction. In addition, the reaction probability has been calculated as well.
基金supported by the National Natural Science Foundation of China (Grant No.11074103)the Discipline ConstructionFund of Ludong University,China
文摘Employing the quasi-classical trajectory method and the potential energy surface of Panda and Sathyamurhy [Panda A N and Sathyamurthy N 2004 J. Chem. Phys. 121 9343], the effect of the reagent vibration on vector correlation of the ion-molecule reactions D- + H2 and H- + D2 is studied at a collision energy of 35.7 kcal/mol. Four generalized polarization-dependent differential cross sections (2π/σ) (dσ00/dωt), (2π/σ) (dσ20/dσ20), (27π/σ) (dσ22+/dwt), and (2π/σ)(dπ/σ) are presented in the centre-of-mass reference frame, separately. At the same time, the effects on the product angular distributions P(θr), P(~r) and P(Oφ) of the title reactions are also analysed. The calculated results show that the scattering tendencies of the product HD, the alignment and the orientation of j^1 sensitively depend on reagent molecule vibration.
基金supported by the Fundamental Research Funds for the Central Universities of China(Grant Nos.13CX02019A and 13CX05017A)
文摘The (e, 2e) triple differential cross sections (TDCSs) of Ar (3s) are calculated by using distorted-wave Born approx- imation under coplanar asymmetric geometry. The incident electron energy is 113.5 eV, and the scattering electron angle 01 is -15~. The ejected electron energy is set at 10 eV, 7.5 eV, 5 eV, and 2 eV, respectively. The polarization effects have been discussed and the polarization potential Vpol changing from a second-order to a fourth-order term has been analyzed. Our calculated TDCSs have been compared with reported experimental and theoretical results, and the calculated TDCSs of polarization potential up to the fourth order could give a good fit with experimental results in the binary region, but fail to predict the correct recoil-to-binary ratio in most cases.