Using a Razumikhin-type theorem,we obtain sufficient conditions for the global asymptotic stability of the zero solution of a certain fourth order functional differential equations.The result generalizes the well know...Using a Razumikhin-type theorem,we obtain sufficient conditions for the global asymptotic stability of the zero solution of a certain fourth order functional differential equations.The result generalizes the well known results.展开更多
This paper proves that, under the local Lipschitz condition, the stochastic functional differential equations with infinite delay have global solutions without the linear growth condition. Furthermore, the pth moment ...This paper proves that, under the local Lipschitz condition, the stochastic functional differential equations with infinite delay have global solutions without the linear growth condition. Furthermore, the pth moment exponential stability conditions are given. Finally, one example is presented to illustrate our theory.展开更多
In this paper, we investigate the stability of a class of impulsive functional differential equations by using Lyapunov functional and Jensen's inequality. Some new stability theorems are obtained. Examples are given...In this paper, we investigate the stability of a class of impulsive functional differential equations by using Lyapunov functional and Jensen's inequality. Some new stability theorems are obtained. Examples are given to demonstrate the advantage of the obtained results.展开更多
In this paper, we study certain non-autonomous third order delay differential equations with continuous deviating argument and established sufficient conditions for the stability and boundedness of solutions of the eq...In this paper, we study certain non-autonomous third order delay differential equations with continuous deviating argument and established sufficient conditions for the stability and boundedness of solutions of the equations. The conditions stated complement previously known results. Example is also given to illustrate the correctness and significance of the result obtained.展开更多
In this paper,the author investigates uuiform stability,asymptotic stability,and uniform asymptotic stability forthe zero solution of neutral functional differentialequations.Some well-known results are improved.
The main purpose of this paper is to investigate global asymptotic stability of the zero solution of the fifth-order nonlinear delay differential equation on the following form By constructing a Lyapunov functional, s...The main purpose of this paper is to investigate global asymptotic stability of the zero solution of the fifth-order nonlinear delay differential equation on the following form By constructing a Lyapunov functional, sufficient conditions for the stability of the zero solution of this equation are established.展开更多
In this paper,we give sufficient conditions to analyze the practical stability in the pth mean of stochastic differential equations with discontinuous coefficients.The Lyapunov-like function plays an important role in...In this paper,we give sufficient conditions to analyze the practical stability in the pth mean of stochastic differential equations with discontinuous coefficients.The Lyapunov-like function plays an important role in analysis.Some numerical computations are carried out to illustrate the theoretical results.展开更多
By the use of the Liapunov functional approach, a new result is obtained to ascertain the asymptotic stability of zero solution of a certain fourth-order non-linear differential equation with delay. The established re...By the use of the Liapunov functional approach, a new result is obtained to ascertain the asymptotic stability of zero solution of a certain fourth-order non-linear differential equation with delay. The established result is less restrictive than those reported in the literature.展开更多
This paper obtained some theorems that can ascertain the zero solution of functional differential equations are extremely uniformly stable, extremely asymptotically stable or extremely uniformly asymptotically stable....This paper obtained some theorems that can ascertain the zero solution of functional differential equations are extremely uniformly stable, extremely asymptotically stable or extremely uniformly asymptotically stable. In the obtained theorems, the derivative of Liapunov function on t along the solutions of functional differential equations is not required to be always negative, especially, it may be even positive.展开更多
The authors obtain some sufficient conditions for the stability of zero solutions to some types of the functional equation. (x)(t)+ p(t)-x(t)+q(t)x(t)+f (t, xt)=0 by transformations and the Liapunov's Second metho...The authors obtain some sufficient conditions for the stability of zero solutions to some types of the functional equation. (x)(t)+ p(t)-x(t)+q(t)x(t)+f (t, xt)=0 by transformations and the Liapunov's Second method. The obtained conclusions generalize some results of Stability of Equation (x)(t)+p(t)(x)(t)+q(t)x(t)=0 and Jack Hale in his paper of Theory of Functional Differential Equations.展开更多
The stability of second-order differential equations is studied by using their integrals. A system of second-order differential equations can be considered as a mechanical system with holonomic constraints. A conserve...The stability of second-order differential equations is studied by using their integrals. A system of second-order differential equations can be considered as a mechanical system with holonomic constraints. A conserved quantity of the mechanical system or a part of the system is obtained by using the Noether theory. It is possible that the conserved quantity becomes a Liapunov function and the stability of the system is proved by the Liapunov theorem.展开更多
This paper establishes the Razumikhin-type theorem on stability for neutral stochastic functional differential equations with unbounded delay. To overcome difficulties from unbounded delay, we develop several differen...This paper establishes the Razumikhin-type theorem on stability for neutral stochastic functional differential equations with unbounded delay. To overcome difficulties from unbounded delay, we develop several different techniques to investigate stability. To show our idea clearly, we examine neutral stochastic delay differential equations with unbounded delay and linear neutral stochastic Volterra unbounded-delay-integro-differential equations.展开更多
H stability is a new and important concept. In this paper,we discuss the equationx(t)=-a(t)x(t)+∫ t -∞ k(t,s-t,x(s)) d sand we gain a new decision theorem. Using this decision theorem,we obtained a very extensive re...H stability is a new and important concept. In this paper,we discuss the equationx(t)=-a(t)x(t)+∫ t -∞ k(t,s-t,x(s)) d sand we gain a new decision theorem. Using this decision theorem,we obtained a very extensive result of the H uniformly asymptotical stability of this equation. That is,eliminating the restriction that a(t) is bounded.展开更多
The aim of this paper is to the discussion of the exponential stability of a class of impulsive neutral stochastic functional differential equations with Markovian switching.Under the influence of impulsive disturbanc...The aim of this paper is to the discussion of the exponential stability of a class of impulsive neutral stochastic functional differential equations with Markovian switching.Under the influence of impulsive disturbance,the solution for the system is discontinuous.By using the Razumikhin technique and stochastic analysis approaches,as well as combining the idea of mathematical induction and classification discussion,some sufficient conditions for the pth moment exponential stability and almost exponential stability of the systems are obtained.The stability conclusion is full time-delay.The results show that impulse,the point distance of impulse and Markovain switching affect the stability for the system.Finally,two examples are provided to illustrate the effectiveness of the results proposed.展开更多
In this paper, stability problems for the second order nonlinear differential equations disturbed with delays are studied. By means of the new stability theorems and Liapunov functional, the authors obtain some result...In this paper, stability problems for the second order nonlinear differential equations disturbed with delays are studied. By means of the new stability theorems and Liapunov functional, the authors obtain some results of the zero solution of the equations, some well-known results are extended.展开更多
The stability of stochastic functional differential equation with Markovian switching was studied by several authors,but there was almost no work on the stability of the neutral stochastic functional differential equa...The stability of stochastic functional differential equation with Markovian switching was studied by several authors,but there was almost no work on the stability of the neutral stochastic functional differential equations with Markovian switching.The aim of this article is to close this gap.The authors establish Razumikhin-type theorem of the neutral stochastic functional differential equations with Markovian switching,and those without Markovian switching.展开更多
Asymptotic characteristic of solution of the stochastic functional differential equation was discussed and sufficient condition was established by multiple Lyapunov functions for locating the limit set of the solution...Asymptotic characteristic of solution of the stochastic functional differential equation was discussed and sufficient condition was established by multiple Lyapunov functions for locating the limit set of the solution. Moreover, from them many effective criteria on stochastic asymptotic stability, which enable us to construct the Lyapunov functions much more easily in application, were obtained, The results show that the wellknown classical theorem on stochastic asymptotic stability is a special case of our more general results. In the end, application in stochastic Hopfield neural networks is given to verify our results.展开更多
In this work, a new approach to stability theory of functional differential equations is proposed. Instead of putting all components of the state variable x in one Liapunov-Razumikhin function, several functions of pa...In this work, a new approach to stability theory of functional differential equations is proposed. Instead of putting all components of the state variable x in one Liapunov-Razumikhin function, several functions of partial components of x, which can be much easier constructed. are used so that the conditions ensuring that stability are simpler and less restrictive. Also, an example is given to illustrate the advantages of the obtained results.展开更多
This paper discusses the pth moment stability of neutral stochastic differential equations with multiple variable delays. The equation has a much more general form than the neutral stochastic differential equations wi...This paper discusses the pth moment stability of neutral stochastic differential equations with multiple variable delays. The equation has a much more general form than the neutral stochastic differential equations with delay. A new kind of φ-function is introduced to address the stability, which is more general than the exponential stability and polynomial stability. Using a specific Lyapunov function, a stability criteria for the neutral stochastic differential equations with multiple variable delays is established, by which it is relatively easy to verify the stability of such equations. Finally, the proposed theories are illustrated by two examples.展开更多
This paper deals with the problem on the stability for zero solution to a class of functional differential equations with infinite delays. We give up the usual confine to the boundedness of the coefficient matrix of t...This paper deals with the problem on the stability for zero solution to a class of functional differential equations with infinite delays. We give up the usual confine to the boundedness of the coefficient matrix of the equations and obtain some new results which guarantee the stability and asymptotic stability for zero solution of the equations. The results are of simple forms, easily checked and applicable, and extend the relative results of [1].展开更多
基金The project is supported by Natural Science Foundation of Hebei Provice.
文摘Using a Razumikhin-type theorem,we obtain sufficient conditions for the global asymptotic stability of the zero solution of a certain fourth order functional differential equations.The result generalizes the well known results.
文摘This paper proves that, under the local Lipschitz condition, the stochastic functional differential equations with infinite delay have global solutions without the linear growth condition. Furthermore, the pth moment exponential stability conditions are given. Finally, one example is presented to illustrate our theory.
基金supported by the National Natural Science Foundation of China (No. 10871063)Scientific Research Fund of Hunan Provincial Education Department (No. 07A038)
文摘In this paper, we investigate the stability of a class of impulsive functional differential equations by using Lyapunov functional and Jensen's inequality. Some new stability theorems are obtained. Examples are given to demonstrate the advantage of the obtained results.
文摘In this paper, we study certain non-autonomous third order delay differential equations with continuous deviating argument and established sufficient conditions for the stability and boundedness of solutions of the equations. The conditions stated complement previously known results. Example is also given to illustrate the correctness and significance of the result obtained.
文摘The main purpose of this paper is to investigate global asymptotic stability of the zero solution of the fifth-order nonlinear delay differential equation on the following form By constructing a Lyapunov functional, sufficient conditions for the stability of the zero solution of this equation are established.
基金The NSF (10671082) of Chinathe 985 Program of Jilin University,the Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education,the Postgraduate Students Innovative Fund (20080239) of Jilin Universitythe Research Fund (10JDG020) for High-level Group of Jiangsu University
文摘In this paper,we give sufficient conditions to analyze the practical stability in the pth mean of stochastic differential equations with discontinuous coefficients.The Lyapunov-like function plays an important role in analysis.Some numerical computations are carried out to illustrate the theoretical results.
文摘By the use of the Liapunov functional approach, a new result is obtained to ascertain the asymptotic stability of zero solution of a certain fourth-order non-linear differential equation with delay. The established result is less restrictive than those reported in the literature.
基金National Natural Science Foundation ofChina( No.1983 10 3 0 )
文摘This paper obtained some theorems that can ascertain the zero solution of functional differential equations are extremely uniformly stable, extremely asymptotically stable or extremely uniformly asymptotically stable. In the obtained theorems, the derivative of Liapunov function on t along the solutions of functional differential equations is not required to be always negative, especially, it may be even positive.
文摘The authors obtain some sufficient conditions for the stability of zero solutions to some types of the functional equation. (x)(t)+ p(t)-x(t)+q(t)x(t)+f (t, xt)=0 by transformations and the Liapunov's Second method. The obtained conclusions generalize some results of Stability of Equation (x)(t)+p(t)(x)(t)+q(t)x(t)=0 and Jack Hale in his paper of Theory of Functional Differential Equations.
基金Project supported by the National Natural Science Foundation of China (Grant No 10572021) and the Doctoral Program Foundation of Institutions of Higher Education of China (Grant No 20040007022).
文摘The stability of second-order differential equations is studied by using their integrals. A system of second-order differential equations can be considered as a mechanical system with holonomic constraints. A conserved quantity of the mechanical system or a part of the system is obtained by using the Noether theory. It is possible that the conserved quantity becomes a Liapunov function and the stability of the system is proved by the Liapunov theorem.
基金Supported by NSFC (11001091)Chinese UniversityResearch Foundation (2010MS129)
文摘This paper establishes the Razumikhin-type theorem on stability for neutral stochastic functional differential equations with unbounded delay. To overcome difficulties from unbounded delay, we develop several different techniques to investigate stability. To show our idea clearly, we examine neutral stochastic delay differential equations with unbounded delay and linear neutral stochastic Volterra unbounded-delay-integro-differential equations.
文摘H stability is a new and important concept. In this paper,we discuss the equationx(t)=-a(t)x(t)+∫ t -∞ k(t,s-t,x(s)) d sand we gain a new decision theorem. Using this decision theorem,we obtained a very extensive result of the H uniformly asymptotical stability of this equation. That is,eliminating the restriction that a(t) is bounded.
基金This research was supported by the National Nature Science Foundation of China under Grant No.11571245Young Crop Project of Sichuan University under Grant No.2020SCUNL111.
文摘The aim of this paper is to the discussion of the exponential stability of a class of impulsive neutral stochastic functional differential equations with Markovian switching.Under the influence of impulsive disturbance,the solution for the system is discontinuous.By using the Razumikhin technique and stochastic analysis approaches,as well as combining the idea of mathematical induction and classification discussion,some sufficient conditions for the pth moment exponential stability and almost exponential stability of the systems are obtained.The stability conclusion is full time-delay.The results show that impulse,the point distance of impulse and Markovain switching affect the stability for the system.Finally,two examples are provided to illustrate the effectiveness of the results proposed.
文摘In this paper, stability problems for the second order nonlinear differential equations disturbed with delays are studied. By means of the new stability theorems and Liapunov functional, the authors obtain some results of the zero solution of the equations, some well-known results are extended.
基金Sponsored by HUST Foundation(0125011017)the National NSFC under grant(70671047)
文摘The stability of stochastic functional differential equation with Markovian switching was studied by several authors,but there was almost no work on the stability of the neutral stochastic functional differential equations with Markovian switching.The aim of this article is to close this gap.The authors establish Razumikhin-type theorem of the neutral stochastic functional differential equations with Markovian switching,and those without Markovian switching.
基金Project supported by the National Natural Science Foundation of China (Nos.60574025, 60074008)the Natural Science Foundation of Hubei Province of China (No.2004ABA055)
文摘Asymptotic characteristic of solution of the stochastic functional differential equation was discussed and sufficient condition was established by multiple Lyapunov functions for locating the limit set of the solution. Moreover, from them many effective criteria on stochastic asymptotic stability, which enable us to construct the Lyapunov functions much more easily in application, were obtained, The results show that the wellknown classical theorem on stochastic asymptotic stability is a special case of our more general results. In the end, application in stochastic Hopfield neural networks is given to verify our results.
文摘In this work, a new approach to stability theory of functional differential equations is proposed. Instead of putting all components of the state variable x in one Liapunov-Razumikhin function, several functions of partial components of x, which can be much easier constructed. are used so that the conditions ensuring that stability are simpler and less restrictive. Also, an example is given to illustrate the advantages of the obtained results.
基金The National Natural Science Foundation of China (No.10671078)
文摘This paper discusses the pth moment stability of neutral stochastic differential equations with multiple variable delays. The equation has a much more general form than the neutral stochastic differential equations with delay. A new kind of φ-function is introduced to address the stability, which is more general than the exponential stability and polynomial stability. Using a specific Lyapunov function, a stability criteria for the neutral stochastic differential equations with multiple variable delays is established, by which it is relatively easy to verify the stability of such equations. Finally, the proposed theories are illustrated by two examples.
基金supported by the Natural Science Foundation of Fujian Province.
文摘This paper deals with the problem on the stability for zero solution to a class of functional differential equations with infinite delays. We give up the usual confine to the boundedness of the coefficient matrix of the equations and obtain some new results which guarantee the stability and asymptotic stability for zero solution of the equations. The results are of simple forms, easily checked and applicable, and extend the relative results of [1].