This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide...This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide a more reasonable utilization of the constrained communication channel,a novel adaptive memory event-triggered(AMET)mechanism is developed,where two event-triggered thresholds can be dynamically adjusted in the light of the current system information and the transmitted historical data.Sufficient conditions with less conservative design of the fuzzy imperfect premise matching(IPM)controller are presented by introducing the Wirtinger-based integral inequality,the information of membership functions(MFs)and slack matrices.Subsequently,under the IPM policy,a new MFs intelligent optimization technique that takes advantage of the differential evolution algorithm is first provided for IT2 TakagiSugeno(T-S)fuzzy systems to update the fuzzy controller MFs in real-time and achieve a better system control effect.Finally,simulation results demonstrate that the proposed control scheme can obtain better system performance in the case of using fewer communication resources.展开更多
The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various ...The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem.展开更多
The optimization of the rule base of a fuzzy logic system (FLS) based on evolutionary algorithm has achievednotable results. However, due to the diversity of the deep structure in the hierarchical fuzzy system (HFS) a...The optimization of the rule base of a fuzzy logic system (FLS) based on evolutionary algorithm has achievednotable results. However, due to the diversity of the deep structure in the hierarchical fuzzy system (HFS) and thecorrelation of each sub fuzzy system, the uncertainty of the HFS’s deep structure increases. For the HFS, a largenumber of studies mainly use fixed structures, which cannot be selected automatically. To solve this problem, thispaper proposes a novel approach for constructing the incremental HFS. During system design, the deep structureand the rule base of the HFS are encoded separately. Subsequently, the deep structure is adaptively mutated basedon the fitness value, so as to realize the diversity of deep structures while ensuring reasonable competition amongthe structures. Finally, the differential evolution (DE) is used to optimize the deep structure of HFS and theparameters of antecedent and consequent simultaneously. The simulation results confirm the effectiveness of themodel. Specifically, the root mean square errors in the Laser dataset and Friedman dataset are 0.0395 and 0.0725,respectively with rule counts of rules is 8 and 12, respectively.When compared to alternative methods, the resultsindicate that the proposed method offers improvements in accuracy and rule counts.展开更多
Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation indust...Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation industrial processes.This paper addresses the fluctuation problem of CCG through an operational optimization method.Firstly,a density-based affinity propagationalgorithm is proposed so that more ideal working condition categories can be obtained for the complex raw ore properties.Next,a Bayesian network(BN)is applied to explore the relationship between the operational variables and the CCG.Based on the analysis results of BN,a weighted Gaussian process regression model is constructed to predict the CCG that a higher prediction accuracy can be obtained.To ensure the predicted CCG is close to the set value with a smaller magnitude of the operation adjustments and a smaller uncertainty of the prediction results,an index-oriented adaptive differential evolution(IOADE)algorithm is proposed,and the convergence performance of IOADE is superior to the traditional differential evolution and adaptive differential evolution methods.Finally,the effectiveness and feasibility of the proposed methods are verified by the experiments on a copper flotation industrial process.展开更多
When soldering electronic components onto circuit boards,the temperature curves of the reflow ovens across different zones and the conveyor belt speed significantly influence the product quality.This study focuses on ...When soldering electronic components onto circuit boards,the temperature curves of the reflow ovens across different zones and the conveyor belt speed significantly influence the product quality.This study focuses on optimizing the furnace temperature curve under varying settings of reflow oven zone temperatures and conveyor belt speeds.To address this,the research sequentially develops a heat transfer model for reflow soldering,an optimization model for reflow furnace conditions using the differential evolution algorithm,and an evaluation and decision model combining the differential evolution algorithm with the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)method.This approach aims to determine the optimal furnace temperature curve,zone temperatures of the reflow oven,and the conveyor belt speed.展开更多
Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitati...Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitation, a methodology of dimensional synthesis based on multi-objective optimization is presented. First, the dimensional synthesis of the redundant parallel robot is formulated as a nonlinear constrained multi-objective optimization problem. Then four objective functions, separately reflecting occupied space, input/output transmission and torque performances, and multi-criteria constraints, such as dimension, interference and kinematics, are defined. In consideration of the passive exercise of plantar/dorsiflexion requiring large output moment, a torque index is proposed. To cope with the actuation redundancy of the parallel robot, a new output transmission index is defined as well. The multi-objective optimization problem is solved by using a modified Differential Evolution(DE) algorithm, which is characterized by new selection and mutation strategies. Meanwhile, a special penalty method is presented to tackle the multi-criteria constraints. Finally, numerical experiments for different optimization algorithms are implemented. The computation results show that the proposed indices of output transmission and torque, and constraint handling are effective for the redundant parallel robot; the modified DE algorithm is superior to the other tested algorithms, in terms of the ability of global search and the number of non-dominated solutions. The proposed methodology of multi-objective optimization can be also applied to the dimensional synthesis of other redundantly actuated parallel robots only with rotational movements.展开更多
To solve dynamic optimization problem of chemical process (CPDOP), a hybrid differential evolution algorithm, which is integrated with Alopex and named as Alopex-DE, was proposed. In Alopex-DE, each original individua...To solve dynamic optimization problem of chemical process (CPDOP), a hybrid differential evolution algorithm, which is integrated with Alopex and named as Alopex-DE, was proposed. In Alopex-DE, each original individual has its own symbiotic individual, which consists of control parameters. Differential evolution operator is applied for the original individuals to search the global optimization solution. Alopex algorithm is used to co-evolve the symbiotic individuals during the original individual evolution and enhance the fitness of the original individuals. Thus, control parameters are self-adaptively adjusted by Alopex to obtain the real-time optimum values for the original population. To illustrate the whole performance of Alopex-DE, several varietal DEs were applied to optimize 13 benchmark functions. The results show that the whole performance of Alopex-DE is the best. Further, Alopex-DE was applied to solve 4 typical CPDOPs, and the effect of the discrete time degree on the optimization solution was analyzed. The satisfactory result is obtained.展开更多
A self-adaptive differential evolution neutron spectrum unfolding algorithm(SDENUA)is established in this study to unfold the neutron spectra obtained from a water-pumping-injection multilayered concentric sphere neut...A self-adaptive differential evolution neutron spectrum unfolding algorithm(SDENUA)is established in this study to unfold the neutron spectra obtained from a water-pumping-injection multilayered concentric sphere neutron spectrometer(WMNS).Specifically,the neutron fluence bounds are estimated to accelerate the algorithm convergence,and the minimum error between the optimal solution and input neutron counts with relative uncertainties is limited to 10^(-6)to avoid unnecessary calculations.Furthermore,the crossover probability and scaling factor are self-adaptively controlled.FLUKA Monte Carlo is used to simulate the readings of the WMNS under(1)a spectrum of Cf-252 and(2)its spectrum after being moderated,(3)a spectrum used for boron neutron capture therapy,and(4)a reactor spectrum.Subsequently,the measured neutron counts are unfolded using the SDENUA.The uncertainties of the measured neutron count and the response matrix are considered in the SDENUA,which does not require complex parameter tuning or an a priori default spectrum.The results indicate that the solutions of the SDENUA agree better with the IAEA spectra than those of MAXED and GRAVEL in UMG 3.1,and the errors of the final results calculated using the SDENUA are less than 12%.The established SDENUA can be used to unfold spectra from the WMNS.展开更多
An improved differential evolution(IDE)algorithm that adopts a novel mutation strategy to speed up the convergence rate is introduced to solve the resource-constrained project scheduling problem(RCPSP)with the obj...An improved differential evolution(IDE)algorithm that adopts a novel mutation strategy to speed up the convergence rate is introduced to solve the resource-constrained project scheduling problem(RCPSP)with the objective of minimizing project duration Activities priorities for scheduling are represented by individual vectors and a senal scheme is utilized to transform the individual-represented priorities to a feasible schedule according to the precedence and resource constraints so as to be evaluated.To investigate the performance of the IDE-based approach for the RCPSP,it is compared against the meta-heuristic methods of hybrid genetic algorithm(HGA),particle swarm optimization(PSO) and several well selected heuristics.The results show that the proposed scheduling method is better than general heuristic rules and is able to obtain the same optimal result as the HGA and PSO approaches but more efficient than the two algorithms.展开更多
To determine the optimal or near optimal parameters of PID controller with incomplete derivation, a novel design method based on differential evolution (DE) algorithm is presented. The controller is called DE-PID co...To determine the optimal or near optimal parameters of PID controller with incomplete derivation, a novel design method based on differential evolution (DE) algorithm is presented. The controller is called DE-PID controller. To overcome the disadvantages of the integral performance criteria in the frequency domain such as IAE, ISE, and ITSE, a new performance criterion in the time domain is proposed. The optimization procedures employing the DE algorithm to search the optimal or near optimal PID controller parameters of a control system are demonstrated in detail. Three typical control systems are chosen to test and evaluate the adaptation and robustness of the proposed DE-PID controller. The simulation results show that the proposed approach has superior features of easy implementation, stable convergence characteristic, and good computational efficiency. Compared with the ZN, GA, and ASA, the proposed design method is indeed more efficient and robust in improving the step response of a control system.展开更多
A projected skill is adopted by use of the differential evolution (DE) algorithm to calculate a conditional nonlinear optimal perturbation (CNOP). The CNOP is the maximal value of a constrained optimization problem wi...A projected skill is adopted by use of the differential evolution (DE) algorithm to calculate a conditional nonlinear optimal perturbation (CNOP). The CNOP is the maximal value of a constrained optimization problem with a constraint condition, such as a ball constraint. The success of the DE algorithm lies in its ability to handle a non-differentiable and nonlinear cost function. In this study, the DE algorithm and the traditional optimization algorithms used to obtain the CNOPs are compared by analyzing a theoretical grassland ecosystem model and a dynamic global vegetation model. This study shows that the CNOPs generated by the DE algorithm are similar to those by the sequential quadratic programming (SQP) algorithm and the spectral projected gradients (SPG2) algorithm. If the cost function is non-differentiable, the CNOPs could also be caught with the DE algorithm. The numerical results suggest the DE algorithm can be employed to calculate the CNOP, especially when the cost function is non-differentiable.展开更多
Robust and efficient AUV path planning is a key element for persistence AUV maneuvering in variable underwater environments. To develop such a path planning system, in this study, differential evolution(DE) algorithm ...Robust and efficient AUV path planning is a key element for persistence AUV maneuvering in variable underwater environments. To develop such a path planning system, in this study, differential evolution(DE) algorithm is employed. The performance of the DE-based planner in generating time-efficient paths to direct the AUV from its initial conditions to the target of interest is investigated within a complexed 3D underwater environment incorporated with turbulent current vector fields, coastal area,islands, and static/dynamic obstacles. The results of simulations indicate the inherent efficiency of the DE-based path planner as it is capable of extracting feasible areas of a real map to determine the allowed spaces for the vehicle deployment while coping undesired current disturbances, exploiting desirable currents, and avoiding collision boundaries in directing the vehicle to its destination. The results are implementable for a realistic scenario and on-board real AUV as the DE planner satisfies all vehicular and environmental constraints while minimizing the travel time/distance, in a computationally efficient manner.展开更多
Two general approaches are adopted in solving dynamic optimization problems in chemical processes, namely, the analytical and numerical methods. The numerical method, which is based on heuristic algorithms, has been w...Two general approaches are adopted in solving dynamic optimization problems in chemical processes, namely, the analytical and numerical methods. The numerical method, which is based on heuristic algorithms, has been widely used. An approach that combines differential evolution (DE) algorithm and control vector parameteri- zation (CVP) is proposed in this paper. In the proposed CVP, control variables are approximated with polynomials based on state variables and time in the entire time interval. Region reduction strategy is used in DE to reduce the width of the search region, which improves the computing efficiency. The results of the case studies demonstrate the feasibility and efficiency of the oroposed methods.展开更多
Aiming at the hybrid flow-shop (HFS) scheduling that is a complex NP-hard combinatorial problem with wide engineering background, an effective algorithm based on differential evolution (DE) is proposed. By using a...Aiming at the hybrid flow-shop (HFS) scheduling that is a complex NP-hard combinatorial problem with wide engineering background, an effective algorithm based on differential evolution (DE) is proposed. By using a special encoding scheme and combining DE based evolutionary search and local search, the exploration and exploitation abilities are enhanced and well balanced for solving the HFS problems. Simulation results based on some typical problems and comparisons with some existing genetic algorithms demonstrate the proposed algorithm is effective, efficient and robust for solving the HFS problems.展开更多
A new version of differential evolution (DE) algorithm, in which immune concepts and methods are applied to determine the parameter setting, named immune self-adaptive differential evolution (ISDE), is proposed to...A new version of differential evolution (DE) algorithm, in which immune concepts and methods are applied to determine the parameter setting, named immune self-adaptive differential evolution (ISDE), is proposed to improve the performance of the DE algorithm. During the actual operation, ISDE seeks the optimal parameters arising from the evolutionary process, which enable ISDE to alter the algorithm for different optimization problems and improve the performance of ISDE by the control parameters' self-adaptation. The .performance of the proposed method is studied with the use of nine benchmark problems and compared with original DE algorithm ~nd-other well-known self-adaptive DE algorithms. The experiments conducted show that the ISDE clearly outperforms the other DE algorithms in all benchmark functions. Furthermore, ISDE is applied to develop the kinetic model for homogeneous mercury. (Hg) oxidation in flue gas, and satisfactory results are obtained.展开更多
In this paper, an improved hybrid differential evolution-estimation of distribution algorithm (IHDE-EDA) is proposed for nonlinear programming (NLP) and mixed integer nonlinear programming (MINLP) models in engineerin...In this paper, an improved hybrid differential evolution-estimation of distribution algorithm (IHDE-EDA) is proposed for nonlinear programming (NLP) and mixed integer nonlinear programming (MINLP) models in engineering optimization fields. In order to improve the global searching ability and convergence speed, IHDE-EDA takes full advantage of differential information and global statistical information extracted respectively from differential evolution algorithm and annealing mechanism-embedded estimation of distribution algorithm. Moreover, the feasibility rules are used to handle constraints, which do not require additional parameters and can guide the population to the feasible region quickly. The effectiveness of hybridization mechanism of IHDE-EDA is first discussed, and then simulation and comparison based on three benchmark problems demonstrate the efficiency, accuracy and robustness of IHDE-EDA. Finally, optimization on an industrial-size scheduling of two-pipeline crude oil blending problem shows the practical applicability of IHDE-EDA.展开更多
The Rosenbrock function optimization belongs to unconstrained optimization problems, and its global minimum value is located at the bottom of a smooth and narrow valley of the parabolic shape. It is very difficult to ...The Rosenbrock function optimization belongs to unconstrained optimization problems, and its global minimum value is located at the bottom of a smooth and narrow valley of the parabolic shape. It is very difficult to find the global minimum value of the function because of the little information provided for the optimization algorithm. According to the characteristics of the Rosenbrock function, this paper specifically proposed an improved differential evolution algorithm that adopts the self-adaptive scaling factor F and crossover rate CR with elimination mechanism, which can effectively avoid premature convergence of the algorithm and local optimum. This algorithm can also expand the search range at an early stage to find the global minimum of the Rosenbrock function. Many experimental results show that the algorithm has good performance of function optimization and provides a new idea for optimization problems similar to the Rosenbrock function for some problems of special fields.展开更多
To find the optimal operational condition when the properties of feedstock changes in the cracking furnace online,a hybrid algorithm named differential evolution group search optimization(DEGSO) is proposed,which is b...To find the optimal operational condition when the properties of feedstock changes in the cracking furnace online,a hybrid algorithm named differential evolution group search optimization(DEGSO) is proposed,which is based on the differential evolution(DE) and the group search optimization(GSO).The DEGSO combines the advantages of the two algorithms:the high computing speed of DE and the good performance of the GSO for preventing the best particle from converging to local optimum.A cooperative method is also proposed for switching between these two algorithms.If the fitness value of one algorithm keeps invariant in several generations and less than the preset threshold,it is considered to fall into the local optimization and the other algorithm is chosen.Experiments on benchmark functions show that the hybrid algorithm outperforms GSO in accuracy,global searching ability and efficiency.The optimization of ethylene and propylene yields is illustrated as a case by DEGSO.After optimization,the yield of ethylene and propylene is increased remarkably,which provides the proper operational condition of the ethylene cracking furnace.展开更多
This paper introduces a pneumatic finger cylinder servo control system for medical grabbing.First,according to the physical structure of the proportional directional valve and the pneumatic cylinder,the state equation...This paper introduces a pneumatic finger cylinder servo control system for medical grabbing.First,according to the physical structure of the proportional directional valve and the pneumatic cylinder,the state equation of the gas in the servo system was obtained.The Stribeck friction compensation model of a pneumatic finger cylinder controlled by a proportional valve was established and the experimental platform built.To allow the system output to bet-ter track the change in the input signal,the flow-gain compensation method was adopted.On this basis,a friction compensation control strategy based on a differential evolution algorithm was proposed and applied to the position control system of a pneumatic finger cylinder.Finally,the strategy was compared with the traditional proportional derivative(PD)strategy and that with friction compensation.The experimental results showed that the position accuracy of the finger cylinder position control system can be improved by using the friction compensation strategy based on the differential evolution algorithm to optimize the PD parameters.展开更多
In this study, a two-stage method is presented for identifying multiple damage scenarios. In the first stage, the damage locating vector (DLV) method using normalized cumulative energy (nce) is employed for damage...In this study, a two-stage method is presented for identifying multiple damage scenarios. In the first stage, the damage locating vector (DLV) method using normalized cumulative energy (nce) is employed for damage localization in structures. In the second stage, the differential evolution algorithm (DE) is used for damage severity of the structures. In addition, in the second stage, a modification of an available objective function is made for handing the issue of symmetric structures. To verify the effectiveness of the present technique, numerical examples of a 72-bar space truss and a one-span steel portal frame are considered. In addition, the effect of noise on the performance of the identification results is also investigated. The numerical results show that the proposed combination gives good assessment of damage location and extent for multiple structural damage cases.展开更多
基金supported by the National Natural Science Foundation of China(61973105,62373137)。
文摘This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide a more reasonable utilization of the constrained communication channel,a novel adaptive memory event-triggered(AMET)mechanism is developed,where two event-triggered thresholds can be dynamically adjusted in the light of the current system information and the transmitted historical data.Sufficient conditions with less conservative design of the fuzzy imperfect premise matching(IPM)controller are presented by introducing the Wirtinger-based integral inequality,the information of membership functions(MFs)and slack matrices.Subsequently,under the IPM policy,a new MFs intelligent optimization technique that takes advantage of the differential evolution algorithm is first provided for IT2 TakagiSugeno(T-S)fuzzy systems to update the fuzzy controller MFs in real-time and achieve a better system control effect.Finally,simulation results demonstrate that the proposed control scheme can obtain better system performance in the case of using fewer communication resources.
基金in part supported by the Key Research and Development Project of Hubei Province(Nos.2020BAB1141,2023BAB094)the Key Project of Science and Technology Research ProgramofHubei Educational Committee(No.D20211402)+1 种基金the Teaching Research Project of Hubei University of Technology(No.XIAO2018001)the Project of Xiangyang Industrial Research Institute of Hubei University of Technology(No.XYYJ2022C04).
文摘The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem.
基金the Sichuan Science and Technology Program(2021ZYD0016).
文摘The optimization of the rule base of a fuzzy logic system (FLS) based on evolutionary algorithm has achievednotable results. However, due to the diversity of the deep structure in the hierarchical fuzzy system (HFS) and thecorrelation of each sub fuzzy system, the uncertainty of the HFS’s deep structure increases. For the HFS, a largenumber of studies mainly use fixed structures, which cannot be selected automatically. To solve this problem, thispaper proposes a novel approach for constructing the incremental HFS. During system design, the deep structureand the rule base of the HFS are encoded separately. Subsequently, the deep structure is adaptively mutated basedon the fitness value, so as to realize the diversity of deep structures while ensuring reasonable competition amongthe structures. Finally, the differential evolution (DE) is used to optimize the deep structure of HFS and theparameters of antecedent and consequent simultaneously. The simulation results confirm the effectiveness of themodel. Specifically, the root mean square errors in the Laser dataset and Friedman dataset are 0.0395 and 0.0725,respectively with rule counts of rules is 8 and 12, respectively.When compared to alternative methods, the resultsindicate that the proposed method offers improvements in accuracy and rule counts.
基金supported in part by the National Key Research and Development Program of China(2021YFC2902703)the National Natural Science Foundation of China(62173078,61773105,61533007,61873049,61873053,61703085,61374147)。
文摘Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation industrial processes.This paper addresses the fluctuation problem of CCG through an operational optimization method.Firstly,a density-based affinity propagationalgorithm is proposed so that more ideal working condition categories can be obtained for the complex raw ore properties.Next,a Bayesian network(BN)is applied to explore the relationship between the operational variables and the CCG.Based on the analysis results of BN,a weighted Gaussian process regression model is constructed to predict the CCG that a higher prediction accuracy can be obtained.To ensure the predicted CCG is close to the set value with a smaller magnitude of the operation adjustments and a smaller uncertainty of the prediction results,an index-oriented adaptive differential evolution(IOADE)algorithm is proposed,and the convergence performance of IOADE is superior to the traditional differential evolution and adaptive differential evolution methods.Finally,the effectiveness and feasibility of the proposed methods are verified by the experiments on a copper flotation industrial process.
文摘When soldering electronic components onto circuit boards,the temperature curves of the reflow ovens across different zones and the conveyor belt speed significantly influence the product quality.This study focuses on optimizing the furnace temperature curve under varying settings of reflow oven zone temperatures and conveyor belt speeds.To address this,the research sequentially develops a heat transfer model for reflow soldering,an optimization model for reflow furnace conditions using the differential evolution algorithm,and an evaluation and decision model combining the differential evolution algorithm with the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)method.This approach aims to determine the optimal furnace temperature curve,zone temperatures of the reflow oven,and the conveyor belt speed.
基金Supported by National Natural Science Foundation of China(Grant No.51175029)Beijing Municipal Natural Science Foundation of China(Grant No.3132019)
文摘Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitation, a methodology of dimensional synthesis based on multi-objective optimization is presented. First, the dimensional synthesis of the redundant parallel robot is formulated as a nonlinear constrained multi-objective optimization problem. Then four objective functions, separately reflecting occupied space, input/output transmission and torque performances, and multi-criteria constraints, such as dimension, interference and kinematics, are defined. In consideration of the passive exercise of plantar/dorsiflexion requiring large output moment, a torque index is proposed. To cope with the actuation redundancy of the parallel robot, a new output transmission index is defined as well. The multi-objective optimization problem is solved by using a modified Differential Evolution(DE) algorithm, which is characterized by new selection and mutation strategies. Meanwhile, a special penalty method is presented to tackle the multi-criteria constraints. Finally, numerical experiments for different optimization algorithms are implemented. The computation results show that the proposed indices of output transmission and torque, and constraint handling are effective for the redundant parallel robot; the modified DE algorithm is superior to the other tested algorithms, in terms of the ability of global search and the number of non-dominated solutions. The proposed methodology of multi-objective optimization can be also applied to the dimensional synthesis of other redundantly actuated parallel robots only with rotational movements.
基金Project(2013CB733600) supported by the National Basic Research Program of ChinaProject(21176073) supported by the National Natural Science Foundation of China+2 种基金Project(20090074110005) supported by Doctoral Fund of Ministry of Education of ChinaProject(NCET-09-0346) supported by Program for New Century Excellent Talents in University of ChinaProject(09SG29) supported by "Shu Guang", China
文摘To solve dynamic optimization problem of chemical process (CPDOP), a hybrid differential evolution algorithm, which is integrated with Alopex and named as Alopex-DE, was proposed. In Alopex-DE, each original individual has its own symbiotic individual, which consists of control parameters. Differential evolution operator is applied for the original individuals to search the global optimization solution. Alopex algorithm is used to co-evolve the symbiotic individuals during the original individual evolution and enhance the fitness of the original individuals. Thus, control parameters are self-adaptively adjusted by Alopex to obtain the real-time optimum values for the original population. To illustrate the whole performance of Alopex-DE, several varietal DEs were applied to optimize 13 benchmark functions. The results show that the whole performance of Alopex-DE is the best. Further, Alopex-DE was applied to solve 4 typical CPDOPs, and the effect of the discrete time degree on the optimization solution was analyzed. The satisfactory result is obtained.
基金supported by the National Key R&D Program of the MOST of China(No.2016YFA0300204)the National Natural Science Foundation of China(Nos.11227902)as part of the Si PáME2beamline project+1 种基金supported by the National Natural Science Foundation of China(No.41774120)the Sichuan Science and Technology Program(No.2021YJ0329)。
文摘A self-adaptive differential evolution neutron spectrum unfolding algorithm(SDENUA)is established in this study to unfold the neutron spectra obtained from a water-pumping-injection multilayered concentric sphere neutron spectrometer(WMNS).Specifically,the neutron fluence bounds are estimated to accelerate the algorithm convergence,and the minimum error between the optimal solution and input neutron counts with relative uncertainties is limited to 10^(-6)to avoid unnecessary calculations.Furthermore,the crossover probability and scaling factor are self-adaptively controlled.FLUKA Monte Carlo is used to simulate the readings of the WMNS under(1)a spectrum of Cf-252 and(2)its spectrum after being moderated,(3)a spectrum used for boron neutron capture therapy,and(4)a reactor spectrum.Subsequently,the measured neutron counts are unfolded using the SDENUA.The uncertainties of the measured neutron count and the response matrix are considered in the SDENUA,which does not require complex parameter tuning or an a priori default spectrum.The results indicate that the solutions of the SDENUA agree better with the IAEA spectra than those of MAXED and GRAVEL in UMG 3.1,and the errors of the final results calculated using the SDENUA are less than 12%.The established SDENUA can be used to unfold spectra from the WMNS.
基金supported by the National Natural Science Foundation of China(6083500460775047+4 种基金60974048)the National High Technology Research and Development Program of China(863 Program)(2007AA0422442008AA04Z214)the Natural Science Foundation of Hunan Province(09JJ9012)Scientific Research Fund of Hunan Provincial Education Department(08C337)
文摘An improved differential evolution(IDE)algorithm that adopts a novel mutation strategy to speed up the convergence rate is introduced to solve the resource-constrained project scheduling problem(RCPSP)with the objective of minimizing project duration Activities priorities for scheduling are represented by individual vectors and a senal scheme is utilized to transform the individual-represented priorities to a feasible schedule according to the precedence and resource constraints so as to be evaluated.To investigate the performance of the IDE-based approach for the RCPSP,it is compared against the meta-heuristic methods of hybrid genetic algorithm(HGA),particle swarm optimization(PSO) and several well selected heuristics.The results show that the proposed scheduling method is better than general heuristic rules and is able to obtain the same optimal result as the HGA and PSO approaches but more efficient than the two algorithms.
基金the National Natural Science Foundation of China (60375001)the Scientific Research Foundation of Hunan Provincial Education Department (05B016).
文摘To determine the optimal or near optimal parameters of PID controller with incomplete derivation, a novel design method based on differential evolution (DE) algorithm is presented. The controller is called DE-PID controller. To overcome the disadvantages of the integral performance criteria in the frequency domain such as IAE, ISE, and ITSE, a new performance criterion in the time domain is proposed. The optimization procedures employing the DE algorithm to search the optimal or near optimal PID controller parameters of a control system are demonstrated in detail. Three typical control systems are chosen to test and evaluate the adaptation and robustness of the proposed DE-PID controller. The simulation results show that the proposed approach has superior features of easy implementation, stable convergence characteristic, and good computational efficiency. Compared with the ZN, GA, and ASA, the proposed design method is indeed more efficient and robust in improving the step response of a control system.
基金provided by grants from the National Basic Research Program of China (Grant No. 2006CB400503)LASG Free Exploration Fund+1 种基金LASG State Key Laboratory Special Fundthe KZCX3-SW-230 of the Chinese Academy of Sciences
文摘A projected skill is adopted by use of the differential evolution (DE) algorithm to calculate a conditional nonlinear optimal perturbation (CNOP). The CNOP is the maximal value of a constrained optimization problem with a constraint condition, such as a ball constraint. The success of the DE algorithm lies in its ability to handle a non-differentiable and nonlinear cost function. In this study, the DE algorithm and the traditional optimization algorithms used to obtain the CNOPs are compared by analyzing a theoretical grassland ecosystem model and a dynamic global vegetation model. This study shows that the CNOPs generated by the DE algorithm are similar to those by the sequential quadratic programming (SQP) algorithm and the spectral projected gradients (SPG2) algorithm. If the cost function is non-differentiable, the CNOPs could also be caught with the DE algorithm. The numerical results suggest the DE algorithm can be employed to calculate the CNOP, especially when the cost function is non-differentiable.
文摘Robust and efficient AUV path planning is a key element for persistence AUV maneuvering in variable underwater environments. To develop such a path planning system, in this study, differential evolution(DE) algorithm is employed. The performance of the DE-based planner in generating time-efficient paths to direct the AUV from its initial conditions to the target of interest is investigated within a complexed 3D underwater environment incorporated with turbulent current vector fields, coastal area,islands, and static/dynamic obstacles. The results of simulations indicate the inherent efficiency of the DE-based path planner as it is capable of extracting feasible areas of a real map to determine the allowed spaces for the vehicle deployment while coping undesired current disturbances, exploiting desirable currents, and avoiding collision boundaries in directing the vehicle to its destination. The results are implementable for a realistic scenario and on-board real AUV as the DE planner satisfies all vehicular and environmental constraints while minimizing the travel time/distance, in a computationally efficient manner.
基金Supported by the Major State Basic Research Development Program of China(2012CB720500)the National Natural Science Foundation of China(Key Program:U1162202)+2 种基金the National Science Fund for Outstanding Young Scholars(61222303)the National Natural Science Foundation of China(61174118,21206037)Shanghai Leading Academic Discipline Project(B504)
文摘Two general approaches are adopted in solving dynamic optimization problems in chemical processes, namely, the analytical and numerical methods. The numerical method, which is based on heuristic algorithms, has been widely used. An approach that combines differential evolution (DE) algorithm and control vector parameteri- zation (CVP) is proposed in this paper. In the proposed CVP, control variables are approximated with polynomials based on state variables and time in the entire time interval. Region reduction strategy is used in DE to reduce the width of the search region, which improves the computing efficiency. The results of the case studies demonstrate the feasibility and efficiency of the oroposed methods.
基金supported by the National Natural Science Fundation of China (60774082 70871065+2 种基金 60834004)the Program for New Century Excellent Talents in University (NCET-10-0505)the Doctoral Program Foundation of Institutions of Higher Education of China(20100002110014)
文摘Aiming at the hybrid flow-shop (HFS) scheduling that is a complex NP-hard combinatorial problem with wide engineering background, an effective algorithm based on differential evolution (DE) is proposed. By using a special encoding scheme and combining DE based evolutionary search and local search, the exploration and exploitation abilities are enhanced and well balanced for solving the HFS problems. Simulation results based on some typical problems and comparisons with some existing genetic algorithms demonstrate the proposed algorithm is effective, efficient and robust for solving the HFS problems.
基金Supported by the National Natural Science Foundation of China (20506003, 20776042) and the National High-Tech Research and Development Program of China (2007AA04Z 164).
文摘A new version of differential evolution (DE) algorithm, in which immune concepts and methods are applied to determine the parameter setting, named immune self-adaptive differential evolution (ISDE), is proposed to improve the performance of the DE algorithm. During the actual operation, ISDE seeks the optimal parameters arising from the evolutionary process, which enable ISDE to alter the algorithm for different optimization problems and improve the performance of ISDE by the control parameters' self-adaptation. The .performance of the proposed method is studied with the use of nine benchmark problems and compared with original DE algorithm ~nd-other well-known self-adaptive DE algorithms. The experiments conducted show that the ISDE clearly outperforms the other DE algorithms in all benchmark functions. Furthermore, ISDE is applied to develop the kinetic model for homogeneous mercury. (Hg) oxidation in flue gas, and satisfactory results are obtained.
基金Supported by the National Basic Research Program of China (2012CB720500)the National Natural Science Foundation of China (60974008)
文摘In this paper, an improved hybrid differential evolution-estimation of distribution algorithm (IHDE-EDA) is proposed for nonlinear programming (NLP) and mixed integer nonlinear programming (MINLP) models in engineering optimization fields. In order to improve the global searching ability and convergence speed, IHDE-EDA takes full advantage of differential information and global statistical information extracted respectively from differential evolution algorithm and annealing mechanism-embedded estimation of distribution algorithm. Moreover, the feasibility rules are used to handle constraints, which do not require additional parameters and can guide the population to the feasible region quickly. The effectiveness of hybridization mechanism of IHDE-EDA is first discussed, and then simulation and comparison based on three benchmark problems demonstrate the efficiency, accuracy and robustness of IHDE-EDA. Finally, optimization on an industrial-size scheduling of two-pipeline crude oil blending problem shows the practical applicability of IHDE-EDA.
文摘The Rosenbrock function optimization belongs to unconstrained optimization problems, and its global minimum value is located at the bottom of a smooth and narrow valley of the parabolic shape. It is very difficult to find the global minimum value of the function because of the little information provided for the optimization algorithm. According to the characteristics of the Rosenbrock function, this paper specifically proposed an improved differential evolution algorithm that adopts the self-adaptive scaling factor F and crossover rate CR with elimination mechanism, which can effectively avoid premature convergence of the algorithm and local optimum. This algorithm can also expand the search range at an early stage to find the global minimum of the Rosenbrock function. Many experimental results show that the algorithm has good performance of function optimization and provides a new idea for optimization problems similar to the Rosenbrock function for some problems of special fields.
基金Supported by the Major State Basic Research Development Program of China(2012CB720500)the National Natural Science Foundation of China(U1162202),the National Natural Science Foundation of China(61174118)+2 种基金the National High Technology Research and Development Program of China(2012AA040307)Shanghai Key Technologies R&D program(12dz1125100)the Shanghai Leading Academic Discipline Project(B504)
文摘To find the optimal operational condition when the properties of feedstock changes in the cracking furnace online,a hybrid algorithm named differential evolution group search optimization(DEGSO) is proposed,which is based on the differential evolution(DE) and the group search optimization(GSO).The DEGSO combines the advantages of the two algorithms:the high computing speed of DE and the good performance of the GSO for preventing the best particle from converging to local optimum.A cooperative method is also proposed for switching between these two algorithms.If the fitness value of one algorithm keeps invariant in several generations and less than the preset threshold,it is considered to fall into the local optimization and the other algorithm is chosen.Experiments on benchmark functions show that the hybrid algorithm outperforms GSO in accuracy,global searching ability and efficiency.The optimization of ethylene and propylene yields is illustrated as a case by DEGSO.After optimization,the yield of ethylene and propylene is increased remarkably,which provides the proper operational condition of the ethylene cracking furnace.
基金Supported by Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems(Grant No.GZKF-202016)Henan Province Science and Technology Key Project of China(Grant No.202102210081)+1 种基金Fundamental Research Funds for Henan Province Colleges and Universities of China(Grant No.NSFRF140120)Doctor Foundation of Henan Polytechnic University of China(Grant No.B2012-101).
文摘This paper introduces a pneumatic finger cylinder servo control system for medical grabbing.First,according to the physical structure of the proportional directional valve and the pneumatic cylinder,the state equation of the gas in the servo system was obtained.The Stribeck friction compensation model of a pneumatic finger cylinder controlled by a proportional valve was established and the experimental platform built.To allow the system output to bet-ter track the change in the input signal,the flow-gain compensation method was adopted.On this basis,a friction compensation control strategy based on a differential evolution algorithm was proposed and applied to the position control system of a pneumatic finger cylinder.Finally,the strategy was compared with the traditional proportional derivative(PD)strategy and that with friction compensation.The experimental results showed that the position accuracy of the finger cylinder position control system can be improved by using the friction compensation strategy based on the differential evolution algorithm to optimize the PD parameters.
文摘In this study, a two-stage method is presented for identifying multiple damage scenarios. In the first stage, the damage locating vector (DLV) method using normalized cumulative energy (nce) is employed for damage localization in structures. In the second stage, the differential evolution algorithm (DE) is used for damage severity of the structures. In addition, in the second stage, a modification of an available objective function is made for handing the issue of symmetric structures. To verify the effectiveness of the present technique, numerical examples of a 72-bar space truss and a one-span steel portal frame are considered. In addition, the effect of noise on the performance of the identification results is also investigated. The numerical results show that the proposed combination gives good assessment of damage location and extent for multiple structural damage cases.