期刊文献+
共找到101篇文章
< 1 2 6 >
每页显示 20 50 100
An Efficient Differential Evolution for Truss Sizing Optimization Using AdaBoost Classifier
1
作者 Tran-Hieu Nguyen Anh-Tuan Vu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第1期429-458,共30页
Design constraints verification is the most computationally expensive task in evolutionary structural optimization due to a large number of structural analyses thatmust be conducted.Building a surrogatemodel to approx... Design constraints verification is the most computationally expensive task in evolutionary structural optimization due to a large number of structural analyses thatmust be conducted.Building a surrogatemodel to approximate the behavior of structures instead of the exact structural analyses is a possible solution to tackle this problem.However,most existing surrogate models have been designed based on regression techniques.This paper proposes a novel method,called CaDE,which adopts a machine learning classification technique for enhancing the performance of the Differential Evolution(DE)optimization.The proposed method is separated into two stages.During the first optimization stage,the original DE is implemented as usual,but all individuals produced in this phase are stored as inputs of the training data.Based on design constraints verification,these individuals are labeled as“safe”or“unsafe”and their labels are saved as outputs of the training data.When collecting enough data,an AdaBoost model is trained to evaluate the safety state of structures.This model is then used in the second stage to preliminarily assess new individuals,and unpromising ones are rejected without checking design constraints.This method reduces unnecessary structural analyses,thereby shortens the optimization process.Five benchmark truss sizing optimization problems are solved using the proposed method to demonstrate its effectiveness.The obtained results show that the CaDE finds good optimal designs with less structural analyses in comparison with the original DE and four other DE variants.The reduction rate of five examples ranges from 18 to over 50%.Moreover,the proposed method is applied to a real-size transmission tower design problem to exhibit its applicability in practice. 展开更多
关键词 Structural optimization machine learning surrogate model differential evolution AdaBoost classifier
下载PDF
Hybridization of Differential Evolution and Adaptive-Network-Based Fuzzy Inference Systemin Estimation of Compression Coefficient of Plastic Clay Soil
2
作者 Manh Duc Nguyen Ha NguyenHai +4 位作者 Nadhir Al-Ansari MahdisAmiri Hai-Bang Ly Indra Prakash Binh Thai Pham 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第1期149-166,共18页
One of the important geotechnical parameters required for designing of the civil engineering structure is the compressibility of the soil.In this study,the main purpose is to develop a novel hybrid Machine Learning(ML... One of the important geotechnical parameters required for designing of the civil engineering structure is the compressibility of the soil.In this study,the main purpose is to develop a novel hybrid Machine Learning(ML)model(ANFIS-DE),which used Differential Evolution(DE)algorithm to optimize the predictive capability of Adaptive-Network-based Fuzzy Inference System(ANFIS),for estimating soil Compression coefficient(Cc)from other geotechnical parameters namelyWater Content,Void Ratio,SpecificGravity,Liquid Limit,Plastic Limit,Clay content and Depth of Soil Samples.Validation of the predictive capability of the novel model was carried out using statistical indices:Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Correlation Coefficient(R).In addition,two popular ML models namely Reduced Error Pruning Trees(REPTree)and Decision Stump(Dstump)were used for comparison.Results showed that the performance of the novel model ANFIS-DE is the best(R=0.825,MAE=0.064 and RMSE=0.094)in comparison to other models such as REPTree(R=0.7802,MAE=0.068 and RMSE=0.0988)andDstump(R=0.7325,MAE=0.0785 and RMSE=0.1036).Therefore,the ANFIS-DE model can be used as a promising tool for the correct and quick estimation of the soil Cc,which can be employed in the design and construction of civil engineering structures. 展开更多
关键词 Compression coefficient differential evolution adaptive-network-based fuzzy inference system machine learning VIETNAM
下载PDF
基于PCA-SaDE-ELM优化算法的煤层底板破坏深度预测及工程应用 被引量:1
3
作者 刘世伟 赵家鑫 +3 位作者 孙利辉 袁乐忠 杨江华 王中海 《煤炭技术》 CAS 2024年第6期69-73,共5页
基于煤层底板破坏深度实测结果统计分析,通过优化数据样本空间,引入自适应差分进化改进的极限学习机算法,构建了煤层底板破坏深度预测模型,与实测结果对比分析验证,并应用于云驾岭煤矿9^(#)煤层底板破坏深度预测。结果表明:模型预测的... 基于煤层底板破坏深度实测结果统计分析,通过优化数据样本空间,引入自适应差分进化改进的极限学习机算法,构建了煤层底板破坏深度预测模型,与实测结果对比分析验证,并应用于云驾岭煤矿9^(#)煤层底板破坏深度预测。结果表明:模型预测的最大绝对误差不超过0.7 m,相比现有其他预测模型,该模型预测精度提高约70%;云驾岭煤矿19101、19103和19105这3个典型工作面的破坏深度分别为10.80、10.94、11.34 m,介于规范方法和滑移场理论预测结果之间,进一步反映了模型的可靠性;建议对9#煤层底板加固改造后再进行回采。相关研究成果可为我国煤层底板破坏风险管理和煤炭资源的优化回采布置提供一定的理论支撑。 展开更多
关键词 自适应差分进化算法 极限学习机 底板破坏深度 预测模型
下载PDF
基于VMD-DE-ELM的同杆双回输电线路故障识别
4
作者 邹西 吴浩 +2 位作者 邓思敬 漆知渊 宋弘 《四川轻化工大学学报(自然科学版)》 CAS 2023年第5期41-50,共10页
为了提升同杆双回输电线路的稳定性和准确性,通过对区内/外故障电压反行波变化规律进行分析,提出了一种基于变分模态分解和差分进化算法优化极限学习机(VMD-DE-ELM)的同杆双回输电线路区内/外故障识别新方法。首先对发生故障后两端的电... 为了提升同杆双回输电线路的稳定性和准确性,通过对区内/外故障电压反行波变化规律进行分析,提出了一种基于变分模态分解和差分进化算法优化极限学习机(VMD-DE-ELM)的同杆双回输电线路区内/外故障识别新方法。首先对发生故障后两端的电压、电流进行相模变换;再利用VMD将故障后一段时窗内的电压反行波分解到5个尺度上;用特征提取对应尺度下的能量熵组成特征向量;最后针对区内/外故障样本具有不平衡性,通过使用SMOTE算法对区外样本进行扩充后,将特征向量集输入到DE-ELM分类器进行训练和测试。大量仿真结果表明:该方法在不同故障类型、不同过渡电阻、不同故障初始角以及不同故障位置情况下能有效实现区内外故障识别,且在CT饱和、噪声干扰等情况下也能较好识别区内外故障。 展开更多
关键词 同杆双回 电压反行波 变分模态分解 SMOTE算法 差分进化算法优化极限学习机 故障识别
下载PDF
烘丝筒出口叶丝含水率预测模型研究
5
作者 王乐军 王林枝 牛燕丽 《自动化仪表》 CAS 2024年第4期62-66,70,共6页
烘丝的最佳工艺参数难以确认,且叶丝含水率预测误差较大。为了在信息技术方面辅助提升烟草成品质量,研究基于极限学习机(ELM)的烘丝筒出口叶丝含水率预测模型。选取叶丝烘丝过程中松散回潮、预混柜、润叶加料等工艺阶段环境温度、湿度... 烘丝的最佳工艺参数难以确认,且叶丝含水率预测误差较大。为了在信息技术方面辅助提升烟草成品质量,研究基于极限学习机(ELM)的烘丝筒出口叶丝含水率预测模型。选取叶丝烘丝过程中松散回潮、预混柜、润叶加料等工艺阶段环境温度、湿度、加水比例等工艺参数。通过随机森林方法,将处理后有效数据中的各烘丝工艺参数以平均精准度逐渐减少顺序进行重新排序,筛选出对烘丝筒叶丝含水率预测作用较大的烘丝工艺参数。将筛选后的烘丝工艺参数作为ELM的输入数据,获取叶丝含水率预测结果。以含水率预测平均绝对误差最小为差分进化算法的适应度函数,优化ELM的隐含层神经元数量,提升烘丝筒出口叶丝含水率预测精度。试验结果表明,该模型可实现烘丝筒出口叶丝含水率预测,且预测误差小于0.3%,预测精度高。该研究有助于提升烟草质量。 展开更多
关键词 机器学习 烘丝筒出口 叶丝含水率 预测误差 差分进化算法 极限学习机
下载PDF
基于多演化特征的社交网络链路预测算法
6
作者 何玉林 赖俊龙 +2 位作者 崔来中 黄哲学 尹剑飞 《模式识别与人工智能》 EI CSCD 北大核心 2024年第7期597-612,共16页
社交网络链路预测旨在根据已知的网络信息预测未来的链接关系,在推荐系统和合著网络中具有重要作用.然而,现有链路预测算法往往忽视社交网络的多元演化特点,训练时间复杂度较高,限制其执行效率.针对上述问题,文中提出基于多演化特征的... 社交网络链路预测旨在根据已知的网络信息预测未来的链接关系,在推荐系统和合著网络中具有重要作用.然而,现有链路预测算法往往忽视社交网络的多元演化特点,训练时间复杂度较高,限制其执行效率.针对上述问题,文中提出基于多演化特征的社交网络链路预测算法(Multi-evolutionary Features Based Link Prediction Algorithm for Social Network,MEF-LP).首先,设计一种简单高效的时间极限学习机模型,利用门控网络和极限学习机自编码器传递与聚合社交网络快照序列的时间信息.然后,构建多个深度极限学习机,对时间特征进行多角度映射,挖掘社交网络不同的演化特征,并最终融合成综合演化特征.最后,使用基于极限学习机的分类器完成链路预测.在6个真实社交网络上的实验表明,MEF-LP能合理学习社交网络的多演化特征,并获得较优的预测性能. 展开更多
关键词 社交网络分析 链路预测 多元演化 网络快照 极限学习机
下载PDF
基于广义S变换和DE-ELM的电能质量扰动信号分类 被引量:11
7
作者 张卫辉 黄南天 +2 位作者 杨金成 杨永建 王新库 《电测与仪表》 北大核心 2016年第20期50-55,共6页
电能质量扰动信号分类对电能质量综合评估、扰动源定位治理具有重要意义。提出了一种基于广义S变换和差分进化优化极限学习机的电能质量扰动信号分类方法。首先,通过改变S变换在不同频段的窗宽因子,来提高特征表现能力;然后,采用极限学... 电能质量扰动信号分类对电能质量综合评估、扰动源定位治理具有重要意义。提出了一种基于广义S变换和差分进化优化极限学习机的电能质量扰动信号分类方法。首先,通过改变S变换在不同频段的窗宽因子,来提高特征表现能力;然后,采用极限学习机作为扰动分类器,引入具有全局寻优功能的差分进化算法,优化极限学习机输入权值和隐藏层结点偏置,增强极限学习机的泛化能力,提高分类准确率。最后,仿真对比实验表明,相比于支持向量机和极限学习机,文中新方法准确率高、抗噪性强,更适用于电能质量扰动识别工作。 展开更多
关键词 电能质量扰动 广义S变换 差分进化 极限学习机
下载PDF
基于最优解区间预筛选的代理模型辅助天线设计优化算法
8
作者 刘杨 张依轩 +1 位作者 林中朝 焦永昌 《微波学报》 CSCD 北大核心 2024年第4期15-19,29,共6页
针对天线优化中全波仿真计算耗时过多的问题,文中提出了一种基于数据约束的代理模型辅助进化算法(SAADC)以实现天线优化设计中效率的提升。首先采用增强随机型差分进化算法,以保证数据生成的随机性与多样性。进一步通过高斯代理模型对... 针对天线优化中全波仿真计算耗时过多的问题,文中提出了一种基于数据约束的代理模型辅助进化算法(SAADC)以实现天线优化设计中效率的提升。首先采用增强随机型差分进化算法,以保证数据生成的随机性与多样性。进一步通过高斯代理模型对仿真结果进行预测,并利用最优解区间预筛选方法舍弃预测结果中较差的个体,以实现算法收敛速度的提升。最终利用所提出的SAADC,对三个不同拓扑结构E型贴片天线的带宽与增益进行了优化设计与结果分析。结果表明,所提出的算法比现有的代理模型优化算法具有更快的优化速度与更佳的优化结果,可满足天线结构高效优化的实际需求。 展开更多
关键词 天线优化 机器学习 差分进化算法 代理模型 最优解区间预筛选
下载PDF
基于DE-VMD和GMDE的往复压缩机轴承间隙故障诊断方法
9
作者 李彦阳 蔡剑华 曲孝海 《机电工程》 CAS 北大核心 2024年第4期683-690,共8页
针对往复压缩机轴承间隙故障特征提取困难、识别准确率不高等问题,提出了差分进化算法优化变分模态分解方法和广义多尺度散布熵相结合的往复压缩机间隙故障诊断方法。首先,采用差分进化算法对变分模态分解算法的两个核心参数进行了优化... 针对往复压缩机轴承间隙故障特征提取困难、识别准确率不高等问题,提出了差分进化算法优化变分模态分解方法和广义多尺度散布熵相结合的往复压缩机间隙故障诊断方法。首先,采用差分进化算法对变分模态分解算法的两个核心参数进行了优化,并利用优化后的变分模态分解方法对轴承间隙振动信号进行了信号分解和重构处理;然后,研究了多尺度散布熵的粗粒化过程,通过将方差粗粒化代替均值粗粒化,进行了多尺度处理,构建了广义多尺度散布熵算法,利用广义多尺度散布熵算法对重构信号进行了故障特征提取分析;最后,设计了核极限学习机模型对故障特征向量集进行了分类识别,完成了往复压缩机轴承间隙不同故障状态的智能诊断研究。研究结果表明,该故障诊断方法的识别准确率高达97%,高效地实现了轴承不同种类故障的智能诊断目的。 展开更多
关键词 往复压缩机 轴承故障诊断 变分模态分解 广义多尺度散布熵 核极限学习机 差分进化算法
下载PDF
基于差分进化改进混合核极限学习机的指纹定位
10
作者 韦嘉恒 刘伟 +2 位作者 李卓 刘博 王智豪 《中国科技论文》 CAS 2024年第5期600-606,共7页
针对极限学习机(extreme learning machine,ELM)指纹定位泛化性能弱、鲁棒性差等问题,提出一种改进的差分进化算法优化混合核极限学习机的指纹定位方法。该方法利用改进型的Logistic混沌映射提高差分进化算法全局搜索的能力,同时利用动... 针对极限学习机(extreme learning machine,ELM)指纹定位泛化性能弱、鲁棒性差等问题,提出一种改进的差分进化算法优化混合核极限学习机的指纹定位方法。该方法利用改进型的Logistic混沌映射提高差分进化算法全局搜索的能力,同时利用动态控制参数法避免差分进化算法陷入局部最优,然后通过改进差分进化算法自适应调整混合核极限学习机的参数,提高训练效率。在线阶段,利用混合核函数提高极限学习机的学习性能和泛化性能,并引入L1惩罚函数防止过拟合。其泛化能力相较于单一核极限学习机提升明显。该方法有92%的测试点定位误差小于0.5 m,平均误差相较于加权K近邻法(weighted Knearest neighbor,WKNN)降低了32.6%。 展开更多
关键词 混合核极限学习机 LOGISTIC混沌映射 差分进化算法 指纹定位
下载PDF
基于IFD与DE-ELM的轴承故障诊断 被引量:2
11
作者 许有才 万舟 汤超 《计算机测量与控制》 2015年第12期3990-3993,3997,共5页
针对局部均值分解(LMD)实现过程中存在的模态混淆现象和端点效应,影响识别精度的问题,提出了一种基于本征频率尺度分解(IFD)与差分进化极限学习机(DE-ELM)的方法;该方法将数字图像处理的频率分辨率概念与LMD结合起来;首先确定原始振动... 针对局部均值分解(LMD)实现过程中存在的模态混淆现象和端点效应,影响识别精度的问题,提出了一种基于本征频率尺度分解(IFD)与差分进化极限学习机(DE-ELM)的方法;该方法将数字图像处理的频率分辨率概念与LMD结合起来;首先确定原始振动信号中的所有局部极值点的频率分辨率,将振动信号分为高频率分辨率区域和低频率分辨率区域;然后,构造本征频率尺度函数,将本征频率尺度函数添加到局部极值点低频率分辨率区域;最后,对添加本征频率尺度函数的原始振动信号进行LMD分解,在得到的乘积函数(PF)分量中剔除本征频率尺度函数,就可以得到突出原始信号振动特征的不同频率分辨率的PF分量,提取PF分量的特征参数构建特征向量作为DE-ELM的输入,进行故障类型识别;将该方法应用于轴承故障诊断,与LMD相比,故障识别精度提高了8.33%,表明了该方法的有效性与可行性。 展开更多
关键词 本征频率尺度分解 差分进化 极限学习机 端点效应 模态混淆现象
下载PDF
交叉分段差分进化支持向量回归的气体超声流量计测量方法
12
作者 贾秋红 桂生 +2 位作者 王坤 邵剑瑛 毛捷 《应用声学》 CSCD 北大核心 2024年第3期599-607,共9页
为了进一步提高全量程气体超声流量计的测量精度,基于多通道声波到时和实时温度,提出了一种交叉分段差分进化支持向量回归(DE-SVR)模型。考虑到气体在不同流量条件下的流体状态不同,提出了交叉分段处理的方法,采用差分进化算法优化选取... 为了进一步提高全量程气体超声流量计的测量精度,基于多通道声波到时和实时温度,提出了一种交叉分段差分进化支持向量回归(DE-SVR)模型。考虑到气体在不同流量条件下的流体状态不同,提出了交叉分段处理的方法,采用差分进化算法优化选取支持向量回归参数。实验结果表明,对于16∼1600 m3/h全量程,交叉分段DE-SVR和传统积分方法计算气体流量的平均相对误差分别为0.00447和0.02781,前者较后者降低了83.93%;对于16∼160 m3/h小流量,交叉分段DE-SVR和无分段DE-SVR算法计算结果平均相对误差分别为0.00436和0.03214,前者较后者降低了86.43%。该方法有效避免了声道长度、探头角度以及管道直径等参数不确定性对流量计算的影响,为全量程气体流量的高精度测量提供了保障。 展开更多
关键词 气体超声流量计 支持向量回归 差分进化 机器学习
下载PDF
基于SDL-LightGBM集成学习的软件缺陷预测模型
13
作者 谢华祥 高建华 黄子杰 《计算机工程与设计》 北大核心 2024年第3期769-776,共8页
为提高软件缺陷预测准确性和预测模型的可解释性,提出一种Spearman+DE+LIME+LightGBM(SDL-LightGBM)集成学习的软件缺陷预测模型。使用混合特征选择方法Spearman+LightGBM确定最佳特征子集,在保证模型预测性能的情况下降低模型复杂度;... 为提高软件缺陷预测准确性和预测模型的可解释性,提出一种Spearman+DE+LIME+LightGBM(SDL-LightGBM)集成学习的软件缺陷预测模型。使用混合特征选择方法Spearman+LightGBM确定最佳特征子集,在保证模型预测性能的情况下降低模型复杂度;使用集成学习算法LightGBM(light gradient boosting machine)对特征子集建立预测模型,并使用差分进化(differential evolution, DE)算法优化模型的重要超参数;使用局部可解释的模型无关技术(local interpretable model-agnostic explanations, LIME)对模型进行局部可解释分析。实验通过12个项目的35个版本的结果表明,SDL-LightGBM算法优于现有的软件缺陷预测方法,F1值平均提高8.97%,AUC值平均提高11.42%,模型训练时间缩短43.6%。 展开更多
关键词 缺陷预测 机器学习 集成学习 特征选择 模型优化 模型解释 差分进化
下载PDF
一种融合反向学习机制与差分进化策略的蛇优化算法
14
作者 占宏祥 汪廷华 张昕 《郑州大学学报(理学版)》 CAS 北大核心 2024年第6期25-31,共7页
蛇优化(snake optimizer,SO)算法存在前期收敛速度慢和易陷入局部最优的问题,为此提出一种融合反向学习机制与差分进化策略的改进蛇优化(improved snake optimizer,ISO)算法。反向学习机制可提高种群质量,以提升算法寻优速度;差分进化... 蛇优化(snake optimizer,SO)算法存在前期收敛速度慢和易陷入局部最优的问题,为此提出一种融合反向学习机制与差分进化策略的改进蛇优化(improved snake optimizer,ISO)算法。反向学习机制可提高种群质量,以提升算法寻优速度;差分进化策略有助于算法精准寻优,降低算法陷入局部最优的几率。在10个基准测试函数上的实验结果表明,ISO算法拥有更高的寻优精度和更快的收敛速率。将其应用于支持向量机(support vector machine,SVM)的参数选取中,进一步验证了ISO算法的有效性。 展开更多
关键词 蛇优化算法 差分进化 反向学习 参数优化 支持向量机
下载PDF
融合差分进化的网页暗链集成分类检测方法
15
作者 张紫妍 韩斌 +1 位作者 姜元昊 陈紫薇 《计算机仿真》 2024年第4期391-396,共6页
“暗链”也称黑链,是一种在网站中不易被搜索引擎察觉的链接,其通过隐蔽植入高权重的网站外链扰乱搜索引擎排名,破坏网络环境。它和友情链接有着相似之处,虽然可以有效并快速提高网站的PR值,但是在网站中存在一定的风险性。针对目前网... “暗链”也称黑链,是一种在网站中不易被搜索引擎察觉的链接,其通过隐蔽植入高权重的网站外链扰乱搜索引擎排名,破坏网络环境。它和友情链接有着相似之处,虽然可以有效并快速提高网站的PR值,但是在网站中存在一定的风险性。针对目前网页暗链检测方法中特征集合存在冗余和维数灾难的状况,提出一种基于融合差分进化算法的集成分类器的机器学习网页暗链检测方法。对提取到的初始特征集合首先进行过滤式特征选择,其次通过主成分分析法对特征进行二次提取,最后对决策树、随机森林、AdaBoost以及支持向量机四种分类器利用差分进化方法进行投票集成。实验结果表明,上述方法具有较高的准确度和可靠性,正确识别率达99.8442368%,可为搜索引擎检测暗链行为提供有力的实践支撑。 展开更多
关键词 暗链 特征选择 机器学习 随机森林 支持向量机 差分进化
下载PDF
基于机器学习的多目标投资组合优化研究
16
作者 张鹏 莫仕茵 曹卿 《华南师范大学学报(自然科学版)》 CAS 北大核心 2024年第4期100-110,共11页
文章首先运用随机森林、RBF神经网络和BP神经网络3种机器学习方法预测股票收盘价,使用历史数据和预测的收盘价计算投资组合的收益率均值、下半方差、偏度;然后,考虑交易成本、投资比例上下界约束和借贷约束,提出均值-下半方差-偏度多目... 文章首先运用随机森林、RBF神经网络和BP神经网络3种机器学习方法预测股票收盘价,使用历史数据和预测的收盘价计算投资组合的收益率均值、下半方差、偏度;然后,考虑交易成本、投资比例上下界约束和借贷约束,提出均值-下半方差-偏度多目标投资组合模型(M-SV-S)。该模型对应的优化问题属于非凸优化问题且求解困难,故首先将其转化为单目标优化模型,再运用差分进化算法进行求解。最后,选取上证50指数成分股作为样本进行实证分析,从收益率和索提诺比率等方面来对比M-SV-S模型与等比例投资组合模型的投资表现。实证结果表明:在样本外窗口内,M-SV-S模型的每日净收益率在1%~4%之间、30天的累计超额收益率超过50%、索提诺比率大于0,投资绩效明显优于等比例投资组合模型。 展开更多
关键词 多目标投资组合 机器学习 下半方差 偏度 差分进化算法
下载PDF
比例延迟微分方程的极限学习机算法
17
作者 李佳颖 陈浩 《重庆工商大学学报(自然科学版)》 2024年第1期106-112,共7页
目的针对比例延迟微分方程,提出一种基于极限学习机(ELM)算法的单隐藏层前馈神经网络训练方法,并将该方法推广到求解双比例延迟微分系统。方法首先,构建一个单隐藏层前馈神经网络并随机生成输入权值和隐藏层偏置;然后,通过计算系数矩阵... 目的针对比例延迟微分方程,提出一种基于极限学习机(ELM)算法的单隐藏层前馈神经网络训练方法,并将该方法推广到求解双比例延迟微分系统。方法首先,构建一个单隐藏层前馈神经网络并随机生成输入权值和隐藏层偏置;然后,通过计算系数矩阵使其满足比例延迟微分方程及其初值条件,将其转化为最小二乘问题,利用摩尔-彭罗斯广义逆解出输出权值;最后,将输出权值代入构建的神经网络便可获得具有较高精度的比例延迟微分方程数值解。结果通过数值实验与已有方法的结果进行比较,验证了该方法对处理比例延迟微分方程与双比例延迟微分系统的有效性,且随着选取的训练点和隐藏层节点数量增多,所得到的数值解精度和收敛速度也随之增加。结论ELM算法对处理比例延迟微分方程以及双比例延迟微分系统具有较好的效果。 展开更多
关键词 前馈神经网络 比例延迟微分方程 极限学习机 双比例延迟微分系统
下载PDF
随机森林和DE-ELM的烘丝机入口含水率预测 被引量:7
18
作者 金发岗 王雅琳 +3 位作者 张鹏程 陈晓方 李善莲 张炜 《控制工程》 CSCD 北大核心 2020年第3期532-539,共8页
烘丝机入口含水率是影响烟丝质量与卷烟口感的关键因素。为实现其预测并为操作优化提供依据,提出了基于随机森林和DE-ELM的烘丝机入口含水率预测方法。首先通过随机森林基于平均精确度减少的排序方法筛选特征变量,然后采用差分进化优化... 烘丝机入口含水率是影响烟丝质量与卷烟口感的关键因素。为实现其预测并为操作优化提供依据,提出了基于随机森林和DE-ELM的烘丝机入口含水率预测方法。首先通过随机森林基于平均精确度减少的排序方法筛选特征变量,然后采用差分进化优化的极限学习机(DE-ELM)建立筛选后特征变量与烘丝机入口含水率的关系模型,进而实现烘丝机入口含水率的预测。对比神经网络(BP-NN)、支持向量机(SVM)、普通极限学习机(ELM)及随机森林等方法在相同历史生产数据集上的预测结果,所提DE-ELM预测方法使烘丝机入口含水率的预测准确率稳定在95.87%,预测标准平均误差仅为0.128%,预测效果最佳。 展开更多
关键词 烘丝机 入口含水率 随机森林 极限学习机 差分进化算法
下载PDF
基于Tri-DE-ELM的半监督模式分类方法研究 被引量:7
19
作者 吴明胜 邓晓刚 《计算机工程与应用》 CSCD 北大核心 2018年第3期109-114,共6页
针对极限学习机(ELM)未充分利用未标注样本、训练精度受网络权值初值影响的问题,提出一种基于协同训练与差分进化的改进ELM算法(Tri-DE-ELM)。考虑到传统的ELM模式分类技术只利用了少量标注样本而忽视大量未标注样本的问题,首先应用基于... 针对极限学习机(ELM)未充分利用未标注样本、训练精度受网络权值初值影响的问题,提出一种基于协同训练与差分进化的改进ELM算法(Tri-DE-ELM)。考虑到传统的ELM模式分类技术只利用了少量标注样本而忽视大量未标注样本的问题,首先应用基于Tri-Training算法的协同训练机制构建Tri-ELM半监督分类算法,利用少量的标记样本训练三个基分类器实现对未标记样本的标注。进一步针对基分类器训练中ELM网络输入层权值随机初始化影响分类效果的问题,采用差分进化(DE)算法对网络初值进行优化,优化目标及过程同时包括网络权值和分类误差两方面的因素,以避免网络的过拟合现象。在标准数据集上的实验结果表明,Tri-DE-ELM算法能有效地利用未标注数据,具有比传统ELM更高的分类精度。 展开更多
关键词 极限学习机 差分进化 Tri-Training算法 半监督学习
下载PDF
基于小波系数PCA和SaDE-ELM的电能质量扰动信号分类 被引量:2
20
作者 薛正爱 黄陈蓉 +2 位作者 张建德 支昊 顾飞 《电工电气》 2021年第4期6-10,共5页
电能质量扰动信号分类是电能质量综合治理的前提,为提高分类精度,提出一种基于主成分分析(PCA)和自适应差分进化(SaDE)优化的极限学习机(ELM)的电能质量扰动信号分类方法。对8种扰动信号用db4小波进行10层多分辨分解,与标准能量信号的... 电能质量扰动信号分类是电能质量综合治理的前提,为提高分类精度,提出一种基于主成分分析(PCA)和自适应差分进化(SaDE)优化的极限学习机(ELM)的电能质量扰动信号分类方法。对8种扰动信号用db4小波进行10层多分辨分解,与标准能量信号的能量差系数作为特征向量,PCA对其降维处理,去除冗余特征,得到4维数据作为分类的样本数据集,利用SaDE算法对ELM的输入权值和隐含层节点偏置优化。通过仿真实验表明,提出的SaDE-ELM识别准确率更高,抗噪性更强,更适应于电能质量扰动分类。 展开更多
关键词 电能质量 多分辨分解 主成分分析 自适应差分进化 极限学习机
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部