[Objective] This study aimed to explore the proteins related to pistillate flower development in different mulberry cultivars. [Method] The total proteins of the pistillate flowers of two mulberry cultivars Dal0 (Mor...[Objective] This study aimed to explore the proteins related to pistillate flower development in different mulberry cultivars. [Method] The total proteins of the pistillate flowers of two mulberry cultivars Dal0 (Morus atropurpurea Roxb.) and SG01 (Morus muIticaulis Perr.) were extracted, separated and detected through two- dimensional electrophoresis (2-DE) and mass spectrometry. [Result] There was sig- nificant difference in the expression of proteins from the pistillate flowers of different mulberry cultivars. From the 2-DE images of Dal0 and SG01, 445_+17 and 425_+12 protein spots were respectively detected. The expression levels of 75 protein spots differed significantly. Thirteen spots those were expressed at high levels and well separated were analyzed by mass spectrometry, and nine of them were identified successfully. The nine proteins are involved in the glycometabolism, protein and amino acid metabolism and defense responses during the development of mulberry pistillate flower after they were pollinated. [Conclusion] The findings will provide reference for further study on the molecular mechanism of mulberry pistillate flower de- velopment.展开更多
Objective To identify differentially expressed proteins in the hippocampus of rats after chronic immobilization stress(CIS)using a proteomics approach,and to study the effect of the Xiao Yao San(XYS)decoction on diffe...Objective To identify differentially expressed proteins in the hippocampus of rats after chronic immobilization stress(CIS)using a proteomics approach,and to study the effect of the Xiao Yao San(XYS)decoction on differentially expressed proteins.Methods Twenty-four Sprague Dawley rats were randomly assigned to one of four groups of equal body weight:control(non-stress),7-day stress,21-day stress and21-day stress+XYS treatment groups.Two-dimensional gel electrophoresis(2-DE)was used to detect differences in protein expression in rat hippocampus.One differentially expressed protein was measured and verified by western blotting.Results Seventeen proteins showed differential expression.Among these,eight could be identified:glial fibrillary acidic protein-2(GFAP-2),tubulin alpha-1c,cytoplasmic muscle actin2,14-3-3protein,β-2a tubulin,phosphatidylethanolamine binding protein,synucleinαsyn3,and a low molecular weight(18kD)protein.Six of these proteins exhibited increased expression,one showed decreased expression,and the other protein,which comprised five subtypes,were either increased or decreased.These proteins are known to be involved in immunity,signal transduction,cell cycle control,apoptosis,regulation of enzyme activity,cytoskeleton structure,and synaptic plasticity.GFAP-2was further analyzed,and its differential expression confirmed by western blotting.Conclusion Some proteins are differentially expressed in the hippocampus of rats under chronic stress.The biological functions of these differentially expressed proteins are varied.Finally,the XYS decoction can significantly up-or down-regulate these protein expression levels.展开更多
Objective To screen the differentially expressed proteins(DEPs)in human bronchial epithelial cells(HBE)treated with atmospheric fine particulate matter(PM2.5).Methods HBE cells were treated with PM2.5 samples from She...Objective To screen the differentially expressed proteins(DEPs)in human bronchial epithelial cells(HBE)treated with atmospheric fine particulate matter(PM2.5).Methods HBE cells were treated with PM2.5 samples from Shenzhen and Taiyuan for 24 h.To detect overall protein expression,the Q Exactive mass spectrometer was used.Gene ontology(GO),Kyoto encyclopedia of genes and genomes(KEGG),and Perseus software were used to screen DEPs.Results Overall,67 DEPs were screened in the Shenzhen sample-treated group,of which 46 were upregulated and 21 were downregulated.In total,252 DEPs were screened in the Taiyuan sampletreated group,of which 134 were upregulated and 118 were downregulated.KEGG analysis demonstrated that DEPs were mainly enriched in ubiquitin-mediated proteolysis and HIF-1 signal pathways in Shenzhen PM2.5 samples-treated group.The GO analysis demonstrated that Shenzhen sample-induced DEPs were mainly involved in the biological process for absorption of various metal ions and cell components.The Taiyuan PM2.5-induced DEPs were mainly involved in biological processes of protein aggregation regulation and molecular function of oxidase activity.Additionally,three important DEPs,including ANXA2,DIABLO,and AIMP1,were screened.Conclusion Our findings provide a valuable basis for further evaluation of PM2.5-associated carcinogenesis.展开更多
Total soluble proteins of different life stages, filamentous sporophytes cultivated in high temperatures, and blade gametophytes harvested in different seasons, were identified by SDS-PAGE. The types and amounts of ex...Total soluble proteins of different life stages, filamentous sporophytes cultivated in high temperatures, and blade gametophytes harvested in different seasons, were identified by SDS-PAGE. The types and amounts of expressed proteins also varied amongst the samples. The fewest soluble proteins were present in filamentous sporophytes. There were more types and amounts of soluble protein in conchospores than in filamentous sporophytes, but fewer than in bulgy sporophytes. More types of protein were detected in filamentous sporophytes cultivated in high temperatures than in those growing in normal situations. The most types and amounts of protein were found in blade gametophytes in all samples. Blade gametophytes harvested last year and stored at -20 ℃ showed only minor differences in expression of proteins when compared with those harvested in different seasons.展开更多
Complex pathological changes occur during the development of spinal cord injury(SCI),and determining the underlying molecular events that occur during SCI is necessary for the development of promising molecular target...Complex pathological changes occur during the development of spinal cord injury(SCI),and determining the underlying molecular events that occur during SCI is necessary for the development of promising molecular targets and therapeutic strategies.This study was designed to explore differentially expressed genes(DEGs)associated with the acute and chronic stages of SCI using bioinformatics analysis.Gene expression profiles(GSE45006,GSE93249,and GSE45550)were downloaded from the Gene Expression Omnibus database.SCI-associated DEGs from rat samples were identified,and Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed.In addition,a protein-protein interaction network was constructed.Approximately 66 DEGs were identified in GSE45550 between 3–14 days after SCI,whereas 2418 DEGs were identified in GSE450061–56 days after SCI.Moreover,1263,195,and 75 overlapping DEGs were identified between these two expression profiles,3,7/8,and 14 days after SCI,respectively.Additionally,16 overlapping DEGs were obtained in GSE450061–14 days after SCI,including Pank1,Hn1,Tmem150c,Rgd1309676,Lpl,Mdh1,Nnt,Loc100912219,Large1,Baiap2,Slc24a2,Fundc2,Mrps14,Slc16a7,Obfc1,and Alpk3.Importantly,3882 overlapping DEGs were identified in GSE932491–6 months after SCI,including 3316 protein-coding genes and 567 long non-coding RNA genes.A comparative analysis between GSE93249 and GSE45006 resulted in the enrichment of 1135 overlapping DEGs.The significant functions of these 1135 genes were correlated with the response to the immune effector process,the innate immune response,and cytokine production.Moreover,the biological processes and KEGG pathways of the overlapping DEGs were significantly enriched in immune system-related pathways,osteoclast differentiation,the nuclear factor-κB signaling pathway,and the chemokine signaling pathway.Finally,an analysis of the overlapping DEGs associated with both acute and chronic SCI,assessed using the expression profiles GSE93249 and GSE45006,identified four overlapping DEGs:Slc16a7,Alpk3,Lpl and Nnt.These findings may be useful for revealing the biological processes associated with SCI and the development of targeted intervention strategies.展开更多
Vascular etiology is the second most prevalent cause of cognitive impairment globally.Endothelin-1,which is produced and secreted by endothelial cells and astrocytes,is implicated in the pathogenesis of stroke.However...Vascular etiology is the second most prevalent cause of cognitive impairment globally.Endothelin-1,which is produced and secreted by endothelial cells and astrocytes,is implicated in the pathogenesis of stroke.However,the way in which changes in astrocytic endothelin-1 lead to poststroke cognitive deficits following transient middle cerebral artery occlusion is not well understood.Here,using mice in which astrocytic endothelin-1 was overexpressed,we found that the selective overexpression of endothelin-1 by astrocytic cells led to ischemic stroke-related dementia(1 hour of ischemia;7 days,28 days,or 3 months of reperfusion).We also revealed that astrocytic endothelin-1 overexpression contributed to the role of neural stem cell proliferation but impaired neurogenesis in the dentate gyrus of the hippocampus after middle cerebral artery occlusion.Comprehensive proteome profiles and western blot analysis confirmed that levels of glial fibrillary acidic protein and peroxiredoxin 6,which were differentially expressed in the brain,were significantly increased in mice with astrocytic endothelin-1 overexpression in comparison with wild-type mice 28 days after ischemic stroke.Moreover,the levels of the enriched differentially expressed proteins were closely related to lipid metabolism,as indicated by Kyoto Encyclopedia of Genes and Genomes pathway analysis.Liquid chromatography-mass spectrometry nontargeted metabolite profiling of brain tissues showed that astrocytic endothelin-1 overexpression altered lipid metabolism products such as glycerol phosphatidylcholine,sphingomyelin,and phosphatidic acid.Overall,this study demonstrates that astrocytic endothelin-1 overexpression can impair hippocampal neurogenesis and that it is correlated with lipid metabolism in poststroke cognitive dysfunction.展开更多
采用数据独立采集蛋白质组学技术分析4℃冷藏6 d的原料乳差异蛋白质组成及其生物学功能。冷藏过程中,共鉴定到902种蛋白质。其中,冷藏前期(d 0 vs d 3)和冷藏后期(d 3 vs d 6)分别筛选出70种和71种差异表达蛋白。生物信息学分析发现冷...采用数据独立采集蛋白质组学技术分析4℃冷藏6 d的原料乳差异蛋白质组成及其生物学功能。冷藏过程中,共鉴定到902种蛋白质。其中,冷藏前期(d 0 vs d 3)和冷藏后期(d 3 vs d 6)分别筛选出70种和71种差异表达蛋白。生物信息学分析发现冷藏前期差异蛋白具有对神经生长因子的刺激反应和细胞组织的调控等功能,主要参与了细胞的生物学过程;冷藏后期差异蛋白具有碳水化合物代谢过程和RNA代谢过程的调节等功能,主要参与了糖代谢途径。蛋白-蛋白互作网络分析表明,细胞分裂控制蛋白42同源物(CDC42)是两个冷藏阶段共有的关键节点蛋白,该蛋白与细胞的吞噬作用密切相关。上述结果揭示了冷藏过程中的蛋白质组成差异和功能的多样性,为原料乳的冷藏提供了理论依据,对原料乳的质量控制具有重要意义。展开更多
基金Supported by National Natural Science Foundation of China(31072087)~~
文摘[Objective] This study aimed to explore the proteins related to pistillate flower development in different mulberry cultivars. [Method] The total proteins of the pistillate flowers of two mulberry cultivars Dal0 (Morus atropurpurea Roxb.) and SG01 (Morus muIticaulis Perr.) were extracted, separated and detected through two- dimensional electrophoresis (2-DE) and mass spectrometry. [Result] There was sig- nificant difference in the expression of proteins from the pistillate flowers of different mulberry cultivars. From the 2-DE images of Dal0 and SG01, 445_+17 and 425_+12 protein spots were respectively detected. The expression levels of 75 protein spots differed significantly. Thirteen spots those were expressed at high levels and well separated were analyzed by mass spectrometry, and nine of them were identified successfully. The nine proteins are involved in the glycometabolism, protein and amino acid metabolism and defense responses during the development of mulberry pistillate flower after they were pollinated. [Conclusion] The findings will provide reference for further study on the molecular mechanism of mulberry pistillate flower de- velopment.
基金funding support from the National Natural Science Foundation of China (NO. 81473597)China National Funds for Distinguished Young Scientists (NO. 30825046)supported by the Beijing Natural Sciences Foundation (NO. 7152093)
文摘Objective To identify differentially expressed proteins in the hippocampus of rats after chronic immobilization stress(CIS)using a proteomics approach,and to study the effect of the Xiao Yao San(XYS)decoction on differentially expressed proteins.Methods Twenty-four Sprague Dawley rats were randomly assigned to one of four groups of equal body weight:control(non-stress),7-day stress,21-day stress and21-day stress+XYS treatment groups.Two-dimensional gel electrophoresis(2-DE)was used to detect differences in protein expression in rat hippocampus.One differentially expressed protein was measured and verified by western blotting.Results Seventeen proteins showed differential expression.Among these,eight could be identified:glial fibrillary acidic protein-2(GFAP-2),tubulin alpha-1c,cytoplasmic muscle actin2,14-3-3protein,β-2a tubulin,phosphatidylethanolamine binding protein,synucleinαsyn3,and a low molecular weight(18kD)protein.Six of these proteins exhibited increased expression,one showed decreased expression,and the other protein,which comprised five subtypes,were either increased or decreased.These proteins are known to be involved in immunity,signal transduction,cell cycle control,apoptosis,regulation of enzyme activity,cytoskeleton structure,and synaptic plasticity.GFAP-2was further analyzed,and its differential expression confirmed by western blotting.Conclusion Some proteins are differentially expressed in the hippocampus of rats under chronic stress.The biological functions of these differentially expressed proteins are varied.Finally,the XYS decoction can significantly up-or down-regulate these protein expression levels.
基金Supported by the basic research programs of Shenzhen Science and Technology Innovation Committee to XU Xin Yun[JCYJ20170413101713324]Shenzhen Key Medical Discipline Construction Fund[SZXK067].
文摘Objective To screen the differentially expressed proteins(DEPs)in human bronchial epithelial cells(HBE)treated with atmospheric fine particulate matter(PM2.5).Methods HBE cells were treated with PM2.5 samples from Shenzhen and Taiyuan for 24 h.To detect overall protein expression,the Q Exactive mass spectrometer was used.Gene ontology(GO),Kyoto encyclopedia of genes and genomes(KEGG),and Perseus software were used to screen DEPs.Results Overall,67 DEPs were screened in the Shenzhen sample-treated group,of which 46 were upregulated and 21 were downregulated.In total,252 DEPs were screened in the Taiyuan sampletreated group,of which 134 were upregulated and 118 were downregulated.KEGG analysis demonstrated that DEPs were mainly enriched in ubiquitin-mediated proteolysis and HIF-1 signal pathways in Shenzhen PM2.5 samples-treated group.The GO analysis demonstrated that Shenzhen sample-induced DEPs were mainly involved in the biological process for absorption of various metal ions and cell components.The Taiyuan PM2.5-induced DEPs were mainly involved in biological processes of protein aggregation regulation and molecular function of oxidase activity.Additionally,three important DEPs,including ANXA2,DIABLO,and AIMP1,were screened.Conclusion Our findings provide a valuable basis for further evaluation of PM2.5-associated carcinogenesis.
基金supported by the National Natural Science Foundation of China (No. 40706050, 40706048 and 30700619)the National Science & Technology Pillar Program (No. 2006BAD01A13 and 2008BAC49B04)+2 种基金National special fund for transgenic project (No. 2009ZX08009-019B)Natural Science Foundation of Shandong Province (No. 2009ZRA02075)and Qingdao Municipal Science and Technology plan project (No. 09-2-5-8-hy)
文摘Total soluble proteins of different life stages, filamentous sporophytes cultivated in high temperatures, and blade gametophytes harvested in different seasons, were identified by SDS-PAGE. The types and amounts of expressed proteins also varied amongst the samples. The fewest soluble proteins were present in filamentous sporophytes. There were more types and amounts of soluble protein in conchospores than in filamentous sporophytes, but fewer than in bulgy sporophytes. More types of protein were detected in filamentous sporophytes cultivated in high temperatures than in those growing in normal situations. The most types and amounts of protein were found in blade gametophytes in all samples. Blade gametophytes harvested last year and stored at -20 ℃ showed only minor differences in expression of proteins when compared with those harvested in different seasons.
基金This study was supported by the National Natural Science Foundation of China,No.31571236(to YHK)Science and Technology Planning Project of Beijing of China,No D161100002816001+1 种基金the National Key Research and Development Program of China,No.2016YFC1101604(to DYZ)the Ministry of Education Innovation Program of China,No.IRT_16R01.
文摘Complex pathological changes occur during the development of spinal cord injury(SCI),and determining the underlying molecular events that occur during SCI is necessary for the development of promising molecular targets and therapeutic strategies.This study was designed to explore differentially expressed genes(DEGs)associated with the acute and chronic stages of SCI using bioinformatics analysis.Gene expression profiles(GSE45006,GSE93249,and GSE45550)were downloaded from the Gene Expression Omnibus database.SCI-associated DEGs from rat samples were identified,and Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed.In addition,a protein-protein interaction network was constructed.Approximately 66 DEGs were identified in GSE45550 between 3–14 days after SCI,whereas 2418 DEGs were identified in GSE450061–56 days after SCI.Moreover,1263,195,and 75 overlapping DEGs were identified between these two expression profiles,3,7/8,and 14 days after SCI,respectively.Additionally,16 overlapping DEGs were obtained in GSE450061–14 days after SCI,including Pank1,Hn1,Tmem150c,Rgd1309676,Lpl,Mdh1,Nnt,Loc100912219,Large1,Baiap2,Slc24a2,Fundc2,Mrps14,Slc16a7,Obfc1,and Alpk3.Importantly,3882 overlapping DEGs were identified in GSE932491–6 months after SCI,including 3316 protein-coding genes and 567 long non-coding RNA genes.A comparative analysis between GSE93249 and GSE45006 resulted in the enrichment of 1135 overlapping DEGs.The significant functions of these 1135 genes were correlated with the response to the immune effector process,the innate immune response,and cytokine production.Moreover,the biological processes and KEGG pathways of the overlapping DEGs were significantly enriched in immune system-related pathways,osteoclast differentiation,the nuclear factor-κB signaling pathway,and the chemokine signaling pathway.Finally,an analysis of the overlapping DEGs associated with both acute and chronic SCI,assessed using the expression profiles GSE93249 and GSE45006,identified four overlapping DEGs:Slc16a7,Alpk3,Lpl and Nnt.These findings may be useful for revealing the biological processes associated with SCI and the development of targeted intervention strategies.
基金financially supported by the National Natural Science Foundation of China,No.81303115,81774042 (both to XC)the Pearl River S&T Nova Program of Guangzhou,No.201806010025 (to XC)+3 种基金the Specialty Program of Guangdong Province Hospital of Chinese Medicine of China,No.YN2018ZD07 (to XC)the Natural Science Foundatior of Guangdong Province of China,No.2023A1515012174 (to JL)the Science and Technology Program of Guangzhou of China,No.20210201 0268 (to XC),20210201 0339 (to JS)Guangdong Provincial Key Laboratory of Research on Emergency in TCM,Nos.2018-75,2019-140 (to JS)
文摘Vascular etiology is the second most prevalent cause of cognitive impairment globally.Endothelin-1,which is produced and secreted by endothelial cells and astrocytes,is implicated in the pathogenesis of stroke.However,the way in which changes in astrocytic endothelin-1 lead to poststroke cognitive deficits following transient middle cerebral artery occlusion is not well understood.Here,using mice in which astrocytic endothelin-1 was overexpressed,we found that the selective overexpression of endothelin-1 by astrocytic cells led to ischemic stroke-related dementia(1 hour of ischemia;7 days,28 days,or 3 months of reperfusion).We also revealed that astrocytic endothelin-1 overexpression contributed to the role of neural stem cell proliferation but impaired neurogenesis in the dentate gyrus of the hippocampus after middle cerebral artery occlusion.Comprehensive proteome profiles and western blot analysis confirmed that levels of glial fibrillary acidic protein and peroxiredoxin 6,which were differentially expressed in the brain,were significantly increased in mice with astrocytic endothelin-1 overexpression in comparison with wild-type mice 28 days after ischemic stroke.Moreover,the levels of the enriched differentially expressed proteins were closely related to lipid metabolism,as indicated by Kyoto Encyclopedia of Genes and Genomes pathway analysis.Liquid chromatography-mass spectrometry nontargeted metabolite profiling of brain tissues showed that astrocytic endothelin-1 overexpression altered lipid metabolism products such as glycerol phosphatidylcholine,sphingomyelin,and phosphatidic acid.Overall,this study demonstrates that astrocytic endothelin-1 overexpression can impair hippocampal neurogenesis and that it is correlated with lipid metabolism in poststroke cognitive dysfunction.
文摘采用数据独立采集蛋白质组学技术分析4℃冷藏6 d的原料乳差异蛋白质组成及其生物学功能。冷藏过程中,共鉴定到902种蛋白质。其中,冷藏前期(d 0 vs d 3)和冷藏后期(d 3 vs d 6)分别筛选出70种和71种差异表达蛋白。生物信息学分析发现冷藏前期差异蛋白具有对神经生长因子的刺激反应和细胞组织的调控等功能,主要参与了细胞的生物学过程;冷藏后期差异蛋白具有碳水化合物代谢过程和RNA代谢过程的调节等功能,主要参与了糖代谢途径。蛋白-蛋白互作网络分析表明,细胞分裂控制蛋白42同源物(CDC42)是两个冷藏阶段共有的关键节点蛋白,该蛋白与细胞的吞噬作用密切相关。上述结果揭示了冷藏过程中的蛋白质组成差异和功能的多样性,为原料乳的冷藏提供了理论依据,对原料乳的质量控制具有重要意义。