The mode-division multiplexing technique combined with a few-mode erbium-doped fiber amplifier(FM-EDFA)demonstrates significant potential for solving the capacity limitation of standard single-mode fiber(SSMF)transmis...The mode-division multiplexing technique combined with a few-mode erbium-doped fiber amplifier(FM-EDFA)demonstrates significant potential for solving the capacity limitation of standard single-mode fiber(SSMF)transmission systems.However,the differential mode gain(DMG)arising in the FM-EDFA fundamentally limits its transmission capacity and length.Herein,an innovative DMG equalization strategy using femtosecond laser micromachining to adjust the refractive index(RI)is presented.Variable mode-dependent attenuations can be achieved according to the DMG profile of the FM-EDFA,enabling DMG equalization.To validate the proposed strategy,DMG equalization of the commonly used FM-EDFA configuration was investigated.Simulation results revealed that by optimizing both the length and RI modulation depth of the femtosecond laser-tailoring area,the maximum DMG(DMGmax)among the 3 linear-polarized(LP)mode-group was mitigated from 10 dB to 1.52 dB,whereas the average DMG(DMGave)over the C-band was reduced from 8.95 dB to 0.78 dB.Finally,a 2-LP mode-group DMG equalizer was experimentally demonstrated,resulting in a reduction of the DMGmax from 2.09 dB to 0.46 dB,and a reduction of DMGave over the C band from 1.64 dB to 0.26 dB,with only a 1.8 dB insertion loss.Moreover,a maximum range of variable DMG equalization was achieved with 5.4 dB,satisfying the requirements of the most commonly used 2-LP mode-group amplification scenarios.展开更多
The accuracy of the measured current is a preeminent parameter for Current Control based Power Converter applications to ensure genuine operation of the designed converter.The current measurement accuracy can be affec...The accuracy of the measured current is a preeminent parameter for Current Control based Power Converter applications to ensure genuine operation of the designed converter.The current measurement accuracy can be affected by several parameters which includes the type of technology used,components used for the selected technology,aging,usage,operating and environmental conditions.The effect of gain resistors and their manufacturing tolerances on differential amplifier-based buck converter current measurement is investigated in this work.The analysis mainly focused on the output voltage variation and its accuracy with respect to the change in gain resistance tolerances.The gain resistors with 5%,1%,0.5%and 0.1%manufacturing tolerances taken for the worst-case analysis and the calculated performance results are compared and verified with the simula-tion results.The Operational amplifiers(Op-Amp)for high frequency power con-verter applications must operate in a high frequency noise environment and the intended current measuring system must manage common mode noise distur-bances paired with the signal to be measured.Based on the Common Mode Rejec-tion Ratio(CMRR)the common mode voltages and noise signals will effectively getfiltered out.Lesser CMRR results in lower common mode signal rejection,resulting in poor precision and noise rejection.In differential amplifiers,the CMRR predominantly depends on gain resistors.So,the variations in Common Mode Rejection Ratio due to gain resistor tolerances also analyzed and compared with the output voltage variations.Besides the effects of resistor tolerances,this paper also examines the effect of Op-Amp offset voltage on output accuracy spe-cifically for low magnitude input currents.The obtained results from this analysis clearly shows that the gain resistors with 0.1%tolerance gives maximum accuracy with improved CMRR and accuracy at low magnitude input currents will get well improved by using Op-Amps with Low Offset voltage specifications.展开更多
基金supported by the National Natural Science Foundation of China(62305071)China Postdoctoral Science Foundation(2023M740747)Guangdong Introducing Innovative and Entrepreneurial Teams of“The Pearl River Talent Recruitment Program”(2021ZT09X044).
文摘The mode-division multiplexing technique combined with a few-mode erbium-doped fiber amplifier(FM-EDFA)demonstrates significant potential for solving the capacity limitation of standard single-mode fiber(SSMF)transmission systems.However,the differential mode gain(DMG)arising in the FM-EDFA fundamentally limits its transmission capacity and length.Herein,an innovative DMG equalization strategy using femtosecond laser micromachining to adjust the refractive index(RI)is presented.Variable mode-dependent attenuations can be achieved according to the DMG profile of the FM-EDFA,enabling DMG equalization.To validate the proposed strategy,DMG equalization of the commonly used FM-EDFA configuration was investigated.Simulation results revealed that by optimizing both the length and RI modulation depth of the femtosecond laser-tailoring area,the maximum DMG(DMGmax)among the 3 linear-polarized(LP)mode-group was mitigated from 10 dB to 1.52 dB,whereas the average DMG(DMGave)over the C-band was reduced from 8.95 dB to 0.78 dB.Finally,a 2-LP mode-group DMG equalizer was experimentally demonstrated,resulting in a reduction of the DMGmax from 2.09 dB to 0.46 dB,and a reduction of DMGave over the C band from 1.64 dB to 0.26 dB,with only a 1.8 dB insertion loss.Moreover,a maximum range of variable DMG equalization was achieved with 5.4 dB,satisfying the requirements of the most commonly used 2-LP mode-group amplification scenarios.
文摘The accuracy of the measured current is a preeminent parameter for Current Control based Power Converter applications to ensure genuine operation of the designed converter.The current measurement accuracy can be affected by several parameters which includes the type of technology used,components used for the selected technology,aging,usage,operating and environmental conditions.The effect of gain resistors and their manufacturing tolerances on differential amplifier-based buck converter current measurement is investigated in this work.The analysis mainly focused on the output voltage variation and its accuracy with respect to the change in gain resistance tolerances.The gain resistors with 5%,1%,0.5%and 0.1%manufacturing tolerances taken for the worst-case analysis and the calculated performance results are compared and verified with the simula-tion results.The Operational amplifiers(Op-Amp)for high frequency power con-verter applications must operate in a high frequency noise environment and the intended current measuring system must manage common mode noise distur-bances paired with the signal to be measured.Based on the Common Mode Rejec-tion Ratio(CMRR)the common mode voltages and noise signals will effectively getfiltered out.Lesser CMRR results in lower common mode signal rejection,resulting in poor precision and noise rejection.In differential amplifiers,the CMRR predominantly depends on gain resistors.So,the variations in Common Mode Rejection Ratio due to gain resistor tolerances also analyzed and compared with the output voltage variations.Besides the effects of resistor tolerances,this paper also examines the effect of Op-Amp offset voltage on output accuracy spe-cifically for low magnitude input currents.The obtained results from this analysis clearly shows that the gain resistors with 0.1%tolerance gives maximum accuracy with improved CMRR and accuracy at low magnitude input currents will get well improved by using Op-Amps with Low Offset voltage specifications.