Based on wavelet packet decomposition (WPD) algorithm and Teager energy operator (TEO), a novel gearbox fault detection and diagnosis method is proposed. Its process is expatiated after the principles of WPD and T...Based on wavelet packet decomposition (WPD) algorithm and Teager energy operator (TEO), a novel gearbox fault detection and diagnosis method is proposed. Its process is expatiated after the principles of WPD and TEO modulation are introduced respectively. The preprocessed sigaaal is interpolated with the cubic spline function, then expanded over the selected basis wavelets. Grouping its wavelet packet components of the signal based on the minimum entropy criterion, the interpolated signal can be decomposed into its dominant components with nearly distinct fault frequency contents. To extract the demodulation information of each dominant component, TEO is used. The performance of the proposed method is assessed by means of several tests on vibration signals collected from the gearbox mounted on a heavy truck. It is proved that hybrid WPD-TEO method is effective and robust for detecting and diagnosing localized gearbox faults.展开更多
Although many methods have been applied to diagnose the gear thult currently, the sensitivity of them is not very good. In order to make the diagnosis methods have more excellent integrated ability in such aspects as ...Although many methods have been applied to diagnose the gear thult currently, the sensitivity of them is not very good. In order to make the diagnosis methods have more excellent integrated ability in such aspects as precision, sensitivity, reliability and compact algorithm, and so on, and enlightened by the energy operator separation algorithm (EOSA), a new demodulation method which is optimizing energy operator separation algorithm (OEOSA) is presented. In the algorithm, the non-linear differential operator is utilized to its differential equation: Choosing the unit impulse response length of filter and fixing the weighting coefficient for inportant points. The method has been applied in diagnosing tooth broden and fatiguing crack of gear faults successfully. It provides demodulation analysis of machine signal with a new approach.展开更多
Complex three-order cumulant has different definition forms. Different forms conclude different information. For studying the effection of frequency in the coupled signals to fault diagnosis, the differential method t...Complex three-order cumulant has different definition forms. Different forms conclude different information. For studying the effection of frequency in the coupled signals to fault diagnosis, the differential method to the three order cumulants of coupled signals is adopted. By using the differential of complex three order cumulants before and after respectively, then their ?dimensional spectrum is calculated, and the results are used to fault diagnosis. The experimental results show that, the increase frequency item in three order cumulants after differentiated impacts on the results of fault diagnosis and the degree of effection is relative to the differential times. And the correct rate of fault diagnosis can be raised by changing the differential times of three order cumulants.展开更多
Based on systematically analyzing the procedure of hazard and operability (HAZOP) study, the author introduces a method of modeling fault diagnosis with the Petri net with fuzzy colors, in which the fuzzy information ...Based on systematically analyzing the procedure of hazard and operability (HAZOP) study, the author introduces a method of modeling fault diagnosis with the Petri net with fuzzy colors, in which the fuzzy information can be represented effectively in the process of analysis. The author proposes the architecture of a knowledge base, which integrates HAZOP analysis and fault diagnosis, and provides the conditions for constructing the knowledge-based expert system. The author also presents a method of knowledge representation for on-line HAZOP analysis and on-line fault diagnosis is presented based on the technology of Petri net with fuzzy colors, which establishes a technological fundamental for integrating the automatic HAZOP analysis and fault diagnosis.展开更多
This study proposes a scheme for state estimation and,consequently,fault diagnosis in nonlinear systems.Initially,an optimal nonlinear observer is designed for nonlinear systems subject to an actuator or plant fault.B...This study proposes a scheme for state estimation and,consequently,fault diagnosis in nonlinear systems.Initially,an optimal nonlinear observer is designed for nonlinear systems subject to an actuator or plant fault.By utilizing Lyapunov's direct method,the observer is proved to be optimal with respect to a performance function,including the magnitude of the observer gain and the convergence time.The observer gain is obtained by using approximation of Hamilton-Jacobi-Bellman(HJB)equation.The approximation is determined via an online trained neural network(NN).Next a class of affine nonlinear systems is considered which is subject to unknown disturbances in addition to fault signals.In this case,for each fault the original system is transformed to a new form in which the proposed optimal observer can be applied for state estimation and fault detection and isolation(FDI).Simulation results of a singlelink flexible joint robot(SLFJR)electric drive system show the effectiveness of the proposed methodology.展开更多
In order to promote the stability of centrifugal pump units and maximize the role of centrifugal pumps, this paper analyzes the composition and basic working principle of centrifugal pumps, presents the main concerns ...In order to promote the stability of centrifugal pump units and maximize the role of centrifugal pumps, this paper analyzes the composition and basic working principle of centrifugal pumps, presents the main concerns of centrifugal pump maintenance, and finally investigates the common faults and maintenance methods of centrifugal pumps for reference.展开更多
Incomplete fault signal characteristics and ease of noise contamination are issues with the current rolling bearing early fault diagnostic methods,making it challenging to ensure the fault diagnosis accuracy and relia...Incomplete fault signal characteristics and ease of noise contamination are issues with the current rolling bearing early fault diagnostic methods,making it challenging to ensure the fault diagnosis accuracy and reliability.A novel approach integrating enhanced Symplectic geometry mode decomposition with cosine difference limitation and calculus operator(ESGMD-CC)and artificial fish swarm algorithm(AFSA)optimized extreme learning machine(ELM)is proposed in this paper to enhance the extraction capability of fault features and thus improve the accuracy of fault diagnosis.Firstly,SGMD decomposes the raw vibration signal into multiple Symplectic geometry components(SGCs).Secondly,the iterations are reset by the cosine difference limitation to effectively separate the redundant components from the representative components.Additionally,the calculus operator is performed to strengthen weak fault features and make them easier to extract,and the singular value decomposition(SVD)weighted by power spectrum entropy(PSE)can be utilized as the sample feature representation.Finally,AFSA iteratively optimized ELM is adopted as the optimized classifier for fault identification.The superior performance of the proposed method has been validated by various experiments.展开更多
The optimal test sequence design for fault diagnosis is a challenging NP-complete problem.An improved differential evolution(DE)algorithm with additional inertial velocity term called inertial velocity differential ev...The optimal test sequence design for fault diagnosis is a challenging NP-complete problem.An improved differential evolution(DE)algorithm with additional inertial velocity term called inertial velocity differential evolution(IVDE)is proposed to solve the optimal test sequence problem(OTP)in complicated electronic system.The proposed IVDE algorithm is constructed based on adaptive differential evolution algorithm.And it is used to optimize the test sequence sets with a new individual fitness function including the index of fault isolation rate(FIR)satisfied and generate diagnostic decision tree to decrease the test sets and the test cost.The simulation results show that IVDE algorithm can cut down the test cost with the satisfied FIR.Compared with the other algorithms such as particle swarm optimization(PSO)and genetic algorithm(GA),IVDE can get better solution to OTP.展开更多
1 Introduction.With the continuous growth of the global population,the energy demand continues to increase.However,due to the dominance of fossil fuels in global energy and fossil fuels are non-renewable,it has led to...1 Introduction.With the continuous growth of the global population,the energy demand continues to increase.However,due to the dominance of fossil fuels in global energy and fossil fuels are non-renewable,it has led to the global energy crisis[1].Besides,the use of fossil fuels will generate a mass of air pollutants(e.g.,carbon dioxide,sulfur dioxide,etc.),which will cause serious environmental pollution,climate change[2],etc.To resolve the aforementioned issues,countries around the world have implemented a variety of measures hoping to fundamentally adjust the global energy structure and achieve sustainable development.Thereinto,“Paris Agreement”reached in 2015 under the framework of“United Nations Framework Convention on Climate Change”aims to control the increase in the average temperature of the globe to within 2°C below preindustrial levels,and thereafter to peak global greenhouse gas emissions as soon as possible,continuously decreasing thereafter[3].United Kingdom plans to reduce the average exhaust emissions of“new cars”to approximately 50–70 g/km by 20230,which is roughly half of what it is now[4].In addition,China proposed a plan at“United Nations General Assembly”in 2020 to peak carbon dioxide emissions by 2030 and strive to achieve carbon neutrality by 2060.It is a fact that the whole world is committed to changing the current energy structure,protecting the Earth’s ecology,and achieving global sustainable development[5].展开更多
This paper presents some practical applications of signed directed graphs (SDGs) to computeraided hazard and operability study (HAZOP) and fault diagnosis, based on an analysis of the SDG theory. The SDG is modele...This paper presents some practical applications of signed directed graphs (SDGs) to computeraided hazard and operability study (HAZOP) and fault diagnosis, based on an analysis of the SDG theory. The SDG is modeled for the inversion of synthetic ammonia, which is highly dangerous in process industry, and HAZOP and fault diagnosis based on the SDG model are presented. A new reasoning method, whereby inverse inference is combined with forward inference, is presented to implement SDG fault diagnosis based on a breadth-first algorithm with consistency rules. Compared with conventional inference engines, this new method can better avoid qualitative spuriousness and combination explosion, and can deal with unobservable nodes in SDGs more effectively. Experimental results show the validity and advantages of the new SDG method.展开更多
Targeting the mode-mixing problem of intrinsic time-scale decomposition (ITD) and the parameter optimization problem of least-square support vector machine (LSSVM), we propose a novel approach based on complete en...Targeting the mode-mixing problem of intrinsic time-scale decomposition (ITD) and the parameter optimization problem of least-square support vector machine (LSSVM), we propose a novel approach based on complete ensemble intrinsic time-scale decomposition (CEITD) and LSSVM optimized by the hybrid differential evolution and particle swarm optimization (HDEPSO) algorithm for the identification of the fault in a diesel engine. The approach consists mainly of three stages. First, to solve the mode-mixing problem of ITD, a novel CEITD method is proposed. Then the CEITD method is used to decompose the nonstationary vibration signal into a set of stationary proper rotation components (PRCs) and a residual signal. Second, three typical types of time-frequency features, namely singular values, PRCs energy and energy entropy, and AR model parameters, are extracted from the first several PRCs and used as the fault feature vectors. Finally, a HDEPSO algorithm is proposed for the parameter optimization of LSSVM, and the fault diagnosis results can be obtained by inputting the fault feature vectors into the HDEPSO-LSSVM classifier. Simulation and experimental results demonstrate that the proposed fault diagnosis approach can overcome the mode-mixing problem of ITD and accurately identify the fault patterns of diesel engines.展开更多
Based on experiment modal analysis(EMA) and operation modal analysis(OMA), the dynamic characteristics of cylindrical grinding machine were measured and provided a basis for further failure analysis.The influences of ...Based on experiment modal analysis(EMA) and operation modal analysis(OMA), the dynamic characteristics of cylindrical grinding machine were measured and provided a basis for further failure analysis.The influences of grinding parameters on dynamic characteristics were studied by analyzing the diagnostic signals extracted from racing and grinding experiments.The significant frequency of 38 Hz related to grinding wheel spindle speed of 2 307 r/min showed that the wheel spindle system was in a state of imbalan...展开更多
The fault detection and diagnosis of diesel engine valve clearance can effectively improve the availability and safety of diesel engine and have extremely important value and significance.Diesel engines generally oper...The fault detection and diagnosis of diesel engine valve clearance can effectively improve the availability and safety of diesel engine and have extremely important value and significance.Diesel engines generally operate in various stable operating conditions,which have important influence on the fault diagnosis.However,many fault diagnosis methods have been put forward under specific stable operating condition based on vibration signal.As the result of great impact caused by operating conditions,corresponding diagnosis models cannot deal with the fault diagnosis under different operating conditions with required accuracy.In this paper,a fault diagnosis of diesel engine valve clearance under variable operating condition based on soft interval support vector machine(SVM)is proposed.Firstly,the fault features with weak condition sensitivity have been extracted according to the influence analysis of fault on vibration signal.Moreover,soft interval constraint has been applied to SVM algorithm to reduce the random influence of vibration signal on fault features.In addition,different machine learning algorithms based on different feature sets are adopted to conduct the fault diagnosis under different operating conditions for comparison.Experimental results show that the proposed method is applicable for fault diagnosis under variable operating condition with good accuracy.展开更多
基金This project is supported by National Natural Science Foundation of China (No.50605065)Natural Science Foundation Project of CQ CSTC (No.2007BB2142)
文摘Based on wavelet packet decomposition (WPD) algorithm and Teager energy operator (TEO), a novel gearbox fault detection and diagnosis method is proposed. Its process is expatiated after the principles of WPD and TEO modulation are introduced respectively. The preprocessed sigaaal is interpolated with the cubic spline function, then expanded over the selected basis wavelets. Grouping its wavelet packet components of the signal based on the minimum entropy criterion, the interpolated signal can be decomposed into its dominant components with nearly distinct fault frequency contents. To extract the demodulation information of each dominant component, TEO is used. The performance of the proposed method is assessed by means of several tests on vibration signals collected from the gearbox mounted on a heavy truck. It is proved that hybrid WPD-TEO method is effective and robust for detecting and diagnosing localized gearbox faults.
基金This project is supported by National Ministry of Education of China (No.020616)Science and Technology Project of Municipal Educational Committee of Chongqing(No.030602)Scientific Research Foundation of Chongqing Institute of Technology(No.2004ZD10).
文摘Although many methods have been applied to diagnose the gear thult currently, the sensitivity of them is not very good. In order to make the diagnosis methods have more excellent integrated ability in such aspects as precision, sensitivity, reliability and compact algorithm, and so on, and enlightened by the energy operator separation algorithm (EOSA), a new demodulation method which is optimizing energy operator separation algorithm (OEOSA) is presented. In the algorithm, the non-linear differential operator is utilized to its differential equation: Choosing the unit impulse response length of filter and fixing the weighting coefficient for inportant points. The method has been applied in diagnosing tooth broden and fatiguing crack of gear faults successfully. It provides demodulation analysis of machine signal with a new approach.
文摘Complex three-order cumulant has different definition forms. Different forms conclude different information. For studying the effection of frequency in the coupled signals to fault diagnosis, the differential method to the three order cumulants of coupled signals is adopted. By using the differential of complex three order cumulants before and after respectively, then their ?dimensional spectrum is calculated, and the results are used to fault diagnosis. The experimental results show that, the increase frequency item in three order cumulants after differentiated impacts on the results of fault diagnosis and the degree of effection is relative to the differential times. And the correct rate of fault diagnosis can be raised by changing the differential times of three order cumulants.
文摘Based on systematically analyzing the procedure of hazard and operability (HAZOP) study, the author introduces a method of modeling fault diagnosis with the Petri net with fuzzy colors, in which the fuzzy information can be represented effectively in the process of analysis. The author proposes the architecture of a knowledge base, which integrates HAZOP analysis and fault diagnosis, and provides the conditions for constructing the knowledge-based expert system. The author also presents a method of knowledge representation for on-line HAZOP analysis and on-line fault diagnosis is presented based on the technology of Petri net with fuzzy colors, which establishes a technological fundamental for integrating the automatic HAZOP analysis and fault diagnosis.
文摘This study proposes a scheme for state estimation and,consequently,fault diagnosis in nonlinear systems.Initially,an optimal nonlinear observer is designed for nonlinear systems subject to an actuator or plant fault.By utilizing Lyapunov's direct method,the observer is proved to be optimal with respect to a performance function,including the magnitude of the observer gain and the convergence time.The observer gain is obtained by using approximation of Hamilton-Jacobi-Bellman(HJB)equation.The approximation is determined via an online trained neural network(NN).Next a class of affine nonlinear systems is considered which is subject to unknown disturbances in addition to fault signals.In this case,for each fault the original system is transformed to a new form in which the proposed optimal observer can be applied for state estimation and fault detection and isolation(FDI).Simulation results of a singlelink flexible joint robot(SLFJR)electric drive system show the effectiveness of the proposed methodology.
文摘In order to promote the stability of centrifugal pump units and maximize the role of centrifugal pumps, this paper analyzes the composition and basic working principle of centrifugal pumps, presents the main concerns of centrifugal pump maintenance, and finally investigates the common faults and maintenance methods of centrifugal pumps for reference.
基金supported by National Key Research and Development Project (2020YFE0204900)National Natural Science Foundation of China (Grant Numbers 62073193,61873333)Key Research and Development Plan of Shandong Province (Grant Numbers 2019TSLH0301,2021CXGC010204).
文摘Incomplete fault signal characteristics and ease of noise contamination are issues with the current rolling bearing early fault diagnostic methods,making it challenging to ensure the fault diagnosis accuracy and reliability.A novel approach integrating enhanced Symplectic geometry mode decomposition with cosine difference limitation and calculus operator(ESGMD-CC)and artificial fish swarm algorithm(AFSA)optimized extreme learning machine(ELM)is proposed in this paper to enhance the extraction capability of fault features and thus improve the accuracy of fault diagnosis.Firstly,SGMD decomposes the raw vibration signal into multiple Symplectic geometry components(SGCs).Secondly,the iterations are reset by the cosine difference limitation to effectively separate the redundant components from the representative components.Additionally,the calculus operator is performed to strengthen weak fault features and make them easier to extract,and the singular value decomposition(SVD)weighted by power spectrum entropy(PSE)can be utilized as the sample feature representation.Finally,AFSA iteratively optimized ELM is adopted as the optimized classifier for fault identification.The superior performance of the proposed method has been validated by various experiments.
基金supported by National Natural Science Foundation of Jiangxi Province, China (No. 20132BAB201044)Jiangxi Higher Technology Landing Project, China (No. KJLD12071)
文摘The optimal test sequence design for fault diagnosis is a challenging NP-complete problem.An improved differential evolution(DE)algorithm with additional inertial velocity term called inertial velocity differential evolution(IVDE)is proposed to solve the optimal test sequence problem(OTP)in complicated electronic system.The proposed IVDE algorithm is constructed based on adaptive differential evolution algorithm.And it is used to optimize the test sequence sets with a new individual fitness function including the index of fault isolation rate(FIR)satisfied and generate diagnostic decision tree to decrease the test sets and the test cost.The simulation results show that IVDE algorithm can cut down the test cost with the satisfied FIR.Compared with the other algorithms such as particle swarm optimization(PSO)and genetic algorithm(GA),IVDE can get better solution to OTP.
文摘1 Introduction.With the continuous growth of the global population,the energy demand continues to increase.However,due to the dominance of fossil fuels in global energy and fossil fuels are non-renewable,it has led to the global energy crisis[1].Besides,the use of fossil fuels will generate a mass of air pollutants(e.g.,carbon dioxide,sulfur dioxide,etc.),which will cause serious environmental pollution,climate change[2],etc.To resolve the aforementioned issues,countries around the world have implemented a variety of measures hoping to fundamentally adjust the global energy structure and achieve sustainable development.Thereinto,“Paris Agreement”reached in 2015 under the framework of“United Nations Framework Convention on Climate Change”aims to control the increase in the average temperature of the globe to within 2°C below preindustrial levels,and thereafter to peak global greenhouse gas emissions as soon as possible,continuously decreasing thereafter[3].United Kingdom plans to reduce the average exhaust emissions of“new cars”to approximately 50–70 g/km by 20230,which is roughly half of what it is now[4].In addition,China proposed a plan at“United Nations General Assembly”in 2020 to peak carbon dioxide emissions by 2030 and strive to achieve carbon neutrality by 2060.It is a fact that the whole world is committed to changing the current energy structure,protecting the Earth’s ecology,and achieving global sustainable development[5].
基金the National High-Tech Research and Development (863) Program of China (No. 2003AA412310)
文摘This paper presents some practical applications of signed directed graphs (SDGs) to computeraided hazard and operability study (HAZOP) and fault diagnosis, based on an analysis of the SDG theory. The SDG is modeled for the inversion of synthetic ammonia, which is highly dangerous in process industry, and HAZOP and fault diagnosis based on the SDG model are presented. A new reasoning method, whereby inverse inference is combined with forward inference, is presented to implement SDG fault diagnosis based on a breadth-first algorithm with consistency rules. Compared with conventional inference engines, this new method can better avoid qualitative spuriousness and combination explosion, and can deal with unobservable nodes in SDGs more effectively. Experimental results show the validity and advantages of the new SDG method.
基金Project supported by the National High-Tech R&D Program(863)of China(No.2014AA041501)
文摘Targeting the mode-mixing problem of intrinsic time-scale decomposition (ITD) and the parameter optimization problem of least-square support vector machine (LSSVM), we propose a novel approach based on complete ensemble intrinsic time-scale decomposition (CEITD) and LSSVM optimized by the hybrid differential evolution and particle swarm optimization (HDEPSO) algorithm for the identification of the fault in a diesel engine. The approach consists mainly of three stages. First, to solve the mode-mixing problem of ITD, a novel CEITD method is proposed. Then the CEITD method is used to decompose the nonstationary vibration signal into a set of stationary proper rotation components (PRCs) and a residual signal. Second, three typical types of time-frequency features, namely singular values, PRCs energy and energy entropy, and AR model parameters, are extracted from the first several PRCs and used as the fault feature vectors. Finally, a HDEPSO algorithm is proposed for the parameter optimization of LSSVM, and the fault diagnosis results can be obtained by inputting the fault feature vectors into the HDEPSO-LSSVM classifier. Simulation and experimental results demonstrate that the proposed fault diagnosis approach can overcome the mode-mixing problem of ITD and accurately identify the fault patterns of diesel engines.
文摘Based on experiment modal analysis(EMA) and operation modal analysis(OMA), the dynamic characteristics of cylindrical grinding machine were measured and provided a basis for further failure analysis.The influences of grinding parameters on dynamic characteristics were studied by analyzing the diagnostic signals extracted from racing and grinding experiments.The significant frequency of 38 Hz related to grinding wheel spindle speed of 2 307 r/min showed that the wheel spindle system was in a state of imbalan...
基金Supported by the National Key Research and Development Plan(No.2016YFF0203305)the Fundamental Research Funds for the Central Universities(No.JD1912,ZY1940)Double First-rate Construction Special Funds(No.ZD1601).
文摘The fault detection and diagnosis of diesel engine valve clearance can effectively improve the availability and safety of diesel engine and have extremely important value and significance.Diesel engines generally operate in various stable operating conditions,which have important influence on the fault diagnosis.However,many fault diagnosis methods have been put forward under specific stable operating condition based on vibration signal.As the result of great impact caused by operating conditions,corresponding diagnosis models cannot deal with the fault diagnosis under different operating conditions with required accuracy.In this paper,a fault diagnosis of diesel engine valve clearance under variable operating condition based on soft interval support vector machine(SVM)is proposed.Firstly,the fault features with weak condition sensitivity have been extracted according to the influence analysis of fault on vibration signal.Moreover,soft interval constraint has been applied to SVM algorithm to reduce the random influence of vibration signal on fault features.In addition,different machine learning algorithms based on different feature sets are adopted to conduct the fault diagnosis under different operating conditions for comparison.Experimental results show that the proposed method is applicable for fault diagnosis under variable operating condition with good accuracy.